
Module Suite 3.9.0 User

Manual

AnswerModules Sagl

AnswerModules Sagl

Copyright © 2013-2025 AnswerModules Sagl

28

28

29

29

29

30

30

31

31

31

32

32

32

33

34

35

35

36

37

Module Suite 3.9.0 User Manual

About this guide

• Audience and objective

• Prerequisites

Release Notes

Module Suite 3.9.0

• Version 3.9.0 - Release notes

• Module Suite Compatibility Matrix

• Major Changes in version 3.9.0

• Large Language Models (LLM) Integration

• Model Context Protocol (MCP) Integration

• SmartUI Commands

• Beautiful WebForms

• Adobe Sign Integration

• Content Script

• Administration

• All Enhancements in version 3.9.0

• Issues Resolved in version 3.9.0

Module Suite 3.8.0

• Version 3.8.0 (Venus)- Release notes

• Module Suite Compatibility Matrix

• All Enhancements in version 3.8.0

37

39

39

39

40

41

41

41

41

42

42

42

42

42

43

43

43

43

43

44

45

49

50

50

50

51

52

• Issues Resolved in version 3.8.0

Module Suite 3.7.0

• Version 3.7.0 (Earth)- Release notes

• Module Suite Compatibility Matrix

• SASL Memcache Authentication Support

• Steps to Enable SASL Memcache Authentication

• Module Suite 3.7.0 Breaking Changes

• Important naming/structuring changes

• Maven coordinate change

• Legacy package removal

• New features

• Switch expressions

• Sealed types

• Records and record-like classes (incubating)

• Built-in type checkers

• GINQ, a.k.a. Groovy-Integrated Query or GQuery (incubating)

• Other improvements

• Legacy consolidation

• JDK requirements

• All Enhancements in version 3.7.0

• Issues Resolved in version 3.7.0

• Dependencies updated in version 3.7.0

Module Suite 3.6.0

• Version 3.6.0 (Genève)- Release notes

• Module Suite Compatibility Matrix

• All Enhancements in version 3.6.0

• Issues Resolved in version 3.6.0

55

55

56

56

58

60

60

61

61

62

64

64

64

65

65

69

69

70

70

70

72

72

72

73

73

73

Module Suite 3.5.0

• Version 3.5.0 (Rome)- Release notes

• Module Suite Compatibility Matrix

• All Enhancements in version 3.5.0

• Issues Resolved in version 3.5.0

Module Suite 3.4.0

• Version 3.4.0 (Rancate) - Release notes

• Module Suite Compatibility Matrix

• All Enhancements in version 3.4.0

• Issues Resolved in version 3.4.0

Module Suite 3.3.0

• Version 3.3.0 (Montebello) - Release notes

• Module Suite Compatibility Matrix

• All Enhancements in version 3.3.0

• Issues Resolved in version 3.3.0

Module Suite 3.2.1

• Version 3.2.1 (Morcote) - Release notes

• Module Suite Compatibility Matrix

• All Enhancements in version 3.2.1

• Issues Resolved in version 3.2.1

Module Suite 3.2.0

• Version 3.2.0 (Locarno) - Release notes

• Module Suite Compatibility Matrix

• Major Changes in version 3.2.0

• Content Script Volume management

• Issues Resolved in version 3.2.0

74

75

75

76

76

76

83

83

84

84

84

86

87

87

87

87

87

87

88

88

88

89

89

91

93

93

Module Suite 3.1.0

• Version 3.1.0 (Ascona) - Release notes

• Module Suite Compatibility Matrix

• Major Changes in version 3.1.0

• All Enhancements in version 3.1.0

• Issues Resolved in version 3.1.0

Module Suite 3.0.0

• Version 3.0.0 (Generoso) - Release notes

• Module Suite Compatibility Matrix

• Major Changes in version 3.0.0

• IDEs

• Filtering

• Remote snippets repositories

• Concurrent Script Editing

• Content Script

• Administration

• Beautiful WebForms

• New V5 library

• New widgets for library V4

• Smart Pages

• Commands definition cache

• Actions definition cache

• Overrides optimization

• How OM is created ?

• All Enhancements in version 3.0.0

• Issues Resolved in version 3.0.0

97

97

97

98

98

98

98

99

99

99

99

100

100

101

101

101

102

102

103

103

103

103

104

Architecture

Module Suite

• Beautiful WebForms

• Content Script

• Smart Pages

• Script Console

• Module Suite default extensions

• Content Script Extension For Workflows

• Content Script Extension For WebReports

• Module Suite Extension For ClassicUI

Module Suite Extensions

• ModuleSuite Extension For DocuSign

• ModuleSuite Extension For ESign

Applicative Layers

Requirements, links and dependencies

• Module Suite Compatibility Matrix

• Dependencies

Modules layouts

• Content Script

• amlib

• csscripts

• library

• override

• Beautiful WebForms

105

105

212

214

214

215

217

217

217

218

218

219

221

221

• Script console

• Script Console main configuration file

Installation and Upgrade

Installing Module Suite

Upgrading Module Suite

Other installation guides

Applying HotFixes

• Hotfixes deployment

Uninstalling Module Suite

• Uninstallation procedure

Usage in Production

• Introduction

• Base Configuration

• Configuration Parameters

• Performance Optimization Parameters Table

• Usage-Based Tuning Parameters Table

• Content Script Volume

• Importing SmartView Enhancements

222

222

222

223

224

224

228

229

229

230

230

230

231

232

232

233

233

235

235

235

236

236

236

236

Administration

Administration tools

• Module Suite Administration Tools

• Base Configuration

• Software activation key status

• Content Script Volume Library

• Enable / Disable Module Suite features

• Select default IP address

• SASL Memcache Authentication Support

• Steps to Enable SASL Memcache Authentication

• Logging administration

• Accessing the log file

• Log level configuration

• Scheduling management utility (Manage Scheduling)

• Callbacks management utility (Manage Callbacks)

• Module Suite Report utility

Content Script Volume

• The Content Script Volume

• CSSystem

• CSFormTemplates

• CSHTMLTemplates

• CSFormSnippets

• CSScriptSnippets

Content Script Volume Import Tool

• Overview

238

238

239

239

240

240

240

240

241

241

242

243

244

244

244

244

244

244

245

245

245

245

245

• Accessing the Content Script Volume Import Tool

• Volume Library utility

• Module Suite Features utilities

• Events

• Classic View

• Columns

• Smart View

• Tools

• Extended ECM

• Volume's Conflicts Resolution utility

• Identifying conflicts

• Import options

Content Script

Getting started

• Getting Started with Content Script

• What is Content Script?

• Key Components

• Quick Start Guide

• 1. Understanding the Basics

• 2. Creating Your First Script

• 3. Learning the Language

• 4. Working with APIs

• 5. Event-Driven Programming

• 6. Extending Functionality

245

246

247

247

248

249

249

250

252

252

254

255

256

257

257

257

258

259

260

260

261

261

261

261

262

262

262

Content Management Object

• Creating a Content Script

• Object's properties

• Static variables

• Scheduling

• Impersonate

• Icon Selection

Editor

• Shortcuts

• Top Bar controls (DEVELOPER)

• Top Bar controls (ADMINISTRATOR)

• Auto-completion

• AI Autocompletion

• Code Validation

• Versions tab

• Code Snippet library

• Online Help

Language basics

• Statements

• Basic Control Structures

• Flow control: if – else

• Flow control: if - else if - else

• Flow control: inline if - else

• Flow control: switch

• Looping: while

• Looping: for

• Operators

263

263

264

264

265

265

266

266

266

272

273

273

274

275

277

278

278

278

279

279

280

281

281

281

281

281

284

• Methods and Service Parameters

• Properties and Fields

• Comments

• Closures

• Content Script programming valuable resources

Writing and executing scripts

• API Services

• Content Script API Service

• Content Script API Objects

• Execution context

• Request variables

• Support variables

• Support objects

• Base API

• Script's execution

• Script's output

• HTML (default)

• JSON

• XML

• Files

• Managed resources

• Redirection

• HTTP Code

• Advanced programming

• Templating

• Content Script velocity macros

• OScript serialized data structures

284

284

285

285

286

287

287

287

289

290

291

297

297

297

297

297

298

298

299

299

300

300

302

302

302

310

• Optimizing your scripts

• Behaviors

• BehaviorHelper

• Default Behaviours

Working with workflows

• Content Script Workflow Steps

• Content Script Package

• Content Script Workflow Step

• Workflow routing

Managing events (callbacks)

• Synchronous and Asynchronous callbacks

• Synchronous Callbacks Configuration

• Default Settings

• Enabling Synchronous Callbacks

• User-Specific Configuration

• Specifying Excluded Users

• InterruptCallbackException - transaction roll-backed

Extending REST APIs

• Extending REST APIs:CSServices

• Basic REST service

• Behaviour based REST services

• Service example

Extending Content Script

• Create a Custom Service

• Content Script SDK setup

• content-script-services.xml – Service description file

310

310

310

311

313

313

313

314

314

315

315

315

317

320

322

325

326

329

414

414

414

414

Content Script extension for SAP

• Content Script Extension for SAP

• Using the extension

• Function execution results

• SAP service APIs

• API Objects

• SapField

• SapFunction

• SapStructure

• SapTable

Extension: Classic UI

• Customize an object's functions menu: CSMenu

• Customize a space's add-items menu: CSAddItems

• Customize a space's buttons bar: CSMultiButtons

• Customize a space's displayed columns: CSBrowseViewColumns

• Default Columns

• Customize a space content view: CSBrowseView

• Create a custom column backed by Content Script: CSDataSources

Extension: AI (LLM)

Extension: AdobeSign

Beautiful WebForms

Getting started

• Getting Started with Beautiful WebForms

• What is Beautiful WebForms?

• Key Components

414

414

415

415

415

415

415

416

416

416

417

418

418

419

420

421

424

424

425

425

425

426

426

427

429

430

430

• Quick Start Guide

• 1. Understanding the Basics

• 2. Creating Form Objects

• 3. Building Forms

• 4. Working with Widgets

• 5. Advanced Features

• Prerequisites

• Next Steps

Content Management Object

• Creating a Beautiful WebForms View

• Understanding the view object

Editor

• Layout

• AI-Based Form Builder

• How It Works

• Key Features

• Allow Creating New Fields

• Single Widget Configuration

• Context Support

• Developer Guide: Editor Overview

• Main Area Functionality

• Editor Exclusivity

• Shortcuts

• Top Bar controls (DESIGNER)

• Top Bar controls (DEVELOPER)

Building views

• Understanding the grid system

431

431

432

433

434

436

437

437

439

441

441

442

443

444

444

445

446

448

449

449

450

455

457

457

458

458

459

• Understanding the Beautiful WebForms request life-cycle

• How incoming requests are processed

• Lifecycle schema

• Custom Logic Execution Hooks (CLEH)

• Managing form fields values

• Adding and removing values from multivalue fields

• Form actions

• Standard form actions

• Custom form actions

• Attaching Custom information and data to a Beautiful WebForms view

• ViewParams

• ViewParams variables

• Form Components that make use of 'viewParams' values.

• The widgets library

• The widget configuration panel

• Beautiful WebForms View Templates

• Customize the way validation error messages are rendered

• Display errors in Smart View

Widgets

• Beautiful WebForms Widgets

• Model and Template

• Static Resources Management

• Widgets libraries

• Widget Library V1

• Widget Library V2

• Widget Library V3

• Widget Library V4

460

461

461

462

463

465

465

465

465

466

466

467

468

468

468

468

468

469

469

470

470

470

471

471

471

471

472

Extending BWF

• Content Script Volume

• CSServices

• CSFormTemplates

• CSFormSnippets

Embed into SmartUI

• Embed into Smart View

• Why?

• Create an embeddable WebForms

• How to publish a Webform into a Smart View perspective

• ModuleSuite Smart Pages is installed

• ModuleSuite Smart Pages is not installed

Update view library

• Beautiful Webforms views updater

• What is it?

• Installation

• Prerequisites

• Installation Steps

• Getting Started

• Main Dashboard

• Dashboard Features

• Navigating the Main Dashboard

• Update Views Configuration

• Library Update

• Default View Template

• Content Source

• Backup View

472

472

473

473

473

473

474

474

474

475

475

476

476

477

478

480

481

481

483

483

484

485

486

486

489

• View Ids

• Updating Views

• Help Guide

• Troubleshooting

• Conclusion

Extension: Mobile WebForms

• What is it?

• AppWorks Mobile Application

• Module Suite based extension for REST APIs

• Mobile WebForms Application Builder

• Mobile WebForms setup

• Using the tool

• Creating the form

• Implementing the Content Script end-point

• Building the OpenText AppWorks Gateway Application

Extension: Remote WebForms

• What is it?

• Extension setup

• Create remote package

• Using forms.createExPackage API

• Using Beautiful Webforms Studio

• How to deploy a Beautiful WebForms remote form package

• Synchronize form data back to Content Server

• Remote data pack files are produced on Script Console and sent over to Content

Server

• Form data are submitted directly from Script Console

491

491

491

491

491

491

492

492

492

492

492

492

492

492

493

493

493

494

494

495

496

496

497

Smart Pages

Getting started

• Getting Started with Smart Pages

• What is Smart Pages?

• Key Components

• Quick Start Guide

• 1. Understanding the Basics

• 2. Working with Tiles

• 3. Creating Smart Pages

• 4. Customizing Smart View

• 5. Integrating WebForms

• 6. Advanced Features

Introduction to Smart Pages

• Smart Pages Fundamentals

• Introduction

• What is "Smart Pages"?

• Smart Pages: Usage Examples

• Tailored Perspectives with Custom Tiles

• Tailored Smart View Features (Menus, Columns)

• Standalone UIs

• Embedded Forms

• Smart Pages in the Module Suite Architecture

• What's in the Smart Pages Toolkit?

• Next Steps

497

497

497

498

498

498

498

498

499

499

500

500

500

500

501

502

502

502

502

502

503

503

503

503

503

504

504

Content Management Object

• The Smart Pages Object

• Overview

• Creating a Smart Page

• Prerequisites

• Creation Steps

• Understanding the Smart Page object

• Smart Page: The MVC Pattern

• Next Steps

Editor

• The Smart Pages Object

• Editing a Smart Page: The Smart Pages Editor IDE

• Layout

• AI-Based Smart Page Builder

• How It Works

• Key Features

• Single Component Configuration

• Context Support

• Next Steps

WebForms Integration

• WebForms in Smart Pages

• Overview

• Why Embed WebForms in Smart Pages?

• Prerequisites

• Creating an Embeddable WebForm

• Embedding WebForms in Smart Pages

• Method 1: Using Content Script Result Tile

504

504

505

506

506

508

509

509

512

518

521

524

529

530

530

530

532

532

532

532

532

533

533

534

534

535

535

• Next Steps

Smart UI Tiles

• Available Smart Page Tiles

• Tile Configuration

• Common Configuration Options

• Content Script Data Sources

• Tile Library Reference

• Content Script Tile Chart

• Content Script Tile Tiles

• Content Script Tile Links

• Content Script Tile Tree

• Content Script Node Table

• Content Script Result

• Icon Reference Cheat Sheet

• Iconset Color Codes

• All Icons

• Next Steps

Smart View Overrides

• Overview

• General Concepts

• Folder Structure

• Override Map (OM) and Actual Override Map (AOM)

• Override Map Structure

• Override Evaluation Order

• How OM is Created

• Example Folder Structure

• Actual Override Map (AOM)

536

536

536

536

536

536

537

537

537

537

538

538

538

539

539

539

540

540

540

542

542

542

543

543

544

545

545

545

• Override Map Creation Timeline

• Initial System Startup

• Per-Space Navigation

• Volume Cache Configuration

• Parameter: amcs.amsui.volumeCache

• Cache Storage Architecture

• Cache Management

• Smart View Custom Menus

• Menu Command Definition

• Basic Command Definition

• Command with Confirmation

• Command with Panel

• Grouped Commands

• Override Configuration

• Override Map Format

• Dynamic Override Script

• Smart View Custom MetaPanels

• MetaPanel Definition Script

• Basic MetaPanel Definition

• Smart View Custom Columns

• Column Definition Script

• Basic Column Definition

• Column Definition Properties

• Column Override Definition

• Smart View Custom Actions

• Registering a Smart View Action

• Actions Object Structure

• Action Registration Script

546

546

546

547

547

547

547

548

548

548

548

548

548

549

549

549

549

549

549

550

550

550

550

550

550

550

551

• Command Execution and Return Values

• Success Message

• Error Message

• Best Practices

• Override Scripts

• Performance

• Security

• Next Steps

Tile Communication

• Communication Between Different Tiles

• Overview

• Radio Channel Communication

• Initializing the Radio Channel

• Communication Patterns

• Pattern 1: Command-Based Communication

• Sending Commands

• Receiving Commands

• Pattern 2: Request-Response Communication

• Making Requests

• Providing Data

• Pattern 3: Event Broadcasting

• Broadcasting Events

• Listening to Events

• Common Communication Scenarios

• Scenario 1: Chart and Filter Tiles

• Filter Tile (Sender)

• Chart Tile (Receiver)

551

551

552

552

552

553

553

553

554

554

554

554

555

555

555

555

555

555

555

556

556

556

556

556

557

558

558

558

• Scenario 2: Links Tile and Node Table

• Links Tile (Sender)

• Node Table Tile (Receiver)

• Scenario 3: Tree Tile and Content Display

• Tree Tile (Sender)

• Content Tile (Receiver)

• Scenario 4: Smart Page Actions

• Triggering Smart Page Actions

• Smart Page Action Handler

• Reload Commands

• Configuration

• Benefits

• Best Practices

• Command Naming

• Error Handling

• Performance

• Debugging

• Advanced Patterns

• Pattern: Observer Pattern

• Pattern: Mediator Pattern

• Next Steps

SmartPages commands

• Integrate SmartUI Commands in your workflow

• Introduction

• Architecture and Communication

• Radio Channel Communication

• Command Pattern

• Typical Communication Sequence

559

559

560

560

560

561

561

563

563

564

565

566

566

567

567

568

568

569

570

570

571

572

572

572

578

• Components of the SmartUI Commands Integration

• Command Handlers

• Integration Use Cases

• Displaying Action Toolbars

• Example: Basic Toolbar Display

• Displaying Document Viewers

• Example: Document Viewer Display

• Displaying Smart Pages

• Example: Loading Smart Pages

• Displaying Side Panels

• Example: Side Panel Display

• Displaying Loading Indicators

• Example: Loading Indicators

• Displaying Messages

• Example: Global Messages

• Closing Panels

• Example: Closing Panels

• Using Commands from Tiles Widgets

• Example: Tile Widget Command

• Best Practices

• Summary

Script Console

Working with Script Console

• Execution modes

• Command Line Shell Mode

• Script Interpreter Mode

579

579

579

581

581

581

582

583

583

584

584

586

586

586

587

588

588

588

589

589

589

• Server Mode

• Script repositories

• Script Console Internal scheduler configuration file

Extension for DocuSign

Working with DocuSign

• Creating a signing Envelope

• EXAMPLE: Creating a simple envelope

• EXAMPLE: Creating an envelope using a predefined template

• Embedded recipients

• EXAMPLE: Get a pre-authenticated signing URL for an OTCS internal user

• Envelope status update and signed document synch back

• EXAMPLE: Poll DocuSign for Envelope updates and synch back documents

How to

Content Script: Retrive information

• Nodes

• Getting Content Server nodes

• Getting a node given its ID

• Get a list of nodes given their IDs

• Get Volumes

• Get Nodes By Path

• Users and Groups

• Getting Content Server Users and Groups

• Get current User

589

590

590

590

590

592

592

592

593

593

594

594

596

598

599

600

600

600

600

601

603

603

603

• Get by member ID

• Get member by the name

• Get members by ID

• Permissions

• Getting Content Server Node Permissions

• Categories

• Getting Node Categories

• Classification

• Executing SQL queries

• Execute a simple SQL query

• Execute a SQL query with pagination

• Working with Forms

• Retrive submitted data

Content Script: Create objects

• Coming soon...

Integrate LLM services

Training Center

• Module Suite Training Center

• What is it?

• Training Center setup

• Using the tool

Tags

• Tags

• CARL

• Model Context Protocol

603

603

603

604

604

604

604

604

604

605

605

605

605

605

605

605

605

605

606

606

• OpenAI

• administration

• batch

• clustered installation

• commands

• configuration

• container

• cost optimization

• installation

• integration

• javascript

• llm

• mcp

• performances-tips

• productive

• radio channel

• smartui

• uninstallation

• unix

• upgrade

About this guide

Audience and objective¶

Module Suite is a collection of solutions that extend the capabilities of OpenText Content Suite

and can be successfully deployed to cover a wide range of tasks, from very simple automation

operations to more complex and complete applications.

This guide is structured to target those who intend to create, deploy, use, and maintain

applications using Content Script, Beautiful WebForms or Smart Pages, and/or want to have a

deeper understanding of the possibilities and what can be achieved with the solutions. It is

also intended to help the administrators of systems that deploy Module Suite Components.

Prerequisites¶

The majority of this manual has been designed to be accessible to anyone familiar with the

basic end-user features of OpenText Content Server. Readers are expected to be comfortable

with creating items, navigating workspaces and searching for items. Although not essential, the

following knowledge is beneficial:

OpenText Content Server Knowledge Fundamentals

Familiarity with the basics of HTML

Ability to create simple LiveReports or WebReports

Knowledge of the DTree view from the OpenText Content Suite schema

•

•

•

•

28 About this guide

Copyright © 2013-2025 AnswerModules Sagl

Release Notes

Version 3.9.0 - Release notes¶

Release Date End of AMP(*) End of Life

2025-09-18 2028-09-18 2029-09-18

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and

known issues related to AnswerModules Modules Suite version 3.9.0.

Module Suite Compatibility Matrix¶
OpenText Content Server MS 3.4.0 MS 3.5.0 MS 3.6.0 MS 3.7.0 MS 3.8.0 MS 3.9.0

Content Suite 21.1 X

Content Suite 21.2 X

Content Suite 21.3 X

Content Suite 21.4 X

Content Suite 22.1 X X X X X

Content Suite 22.2 X X X X X

Content Suite 22.3 X X X X X

Content Suite 22.4 X X X X X

Content Suite 23.1 X(*) X X X X

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best

to ensure that, where necessary, is made clear that the information presented is only applicable to specific

versions, however if you are looking for this version-specific documentation, you can find it here (http://

developer.answermodules.com/manuals/3.9.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.

However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the

accuracy of this publication.

29 Release Notes

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/3.9.0
http://developer.answermodules.com/manuals/3.9.0
http://developer.answermodules.com/manuals/3.9.0
http://developer.answermodules.com/manuals/3.9.0

OpenText Content Server MS 3.4.0 MS 3.5.0 MS 3.6.0 MS 3.7.0 MS 3.8.0 MS 3.9.0

Content Suite 23.2 X X X X X

Content Suite 23.3 X X X X X

Content Suite 23.4 X X X X

Content Suite 24.1 X(**) X X X

Content Suite 24.2 X X X

Content Suite 24.3 X(***) X X

Content Suite 24.4 X X

Content Suite 25.1 X(****) X

Content Suite 25.2 X(*****) X

Content Suite 25.3 X

(*) Requires hotfix hotFix_ANS_340_010 to be installed

(**) Requires hotfix hotFix_ANS_360_009 to be installed

(***) Requires hotfix hotFix_ANS_370_003 to be installed

(****) Requires hotfix hotFix_ANS_380_007 to be installed

(*****) Requires hotfix hotFix_ANS_380_013 to be installed

Major Changes in version 3.9.0¶

Added German, French, and Italian support to Module Suite IDEs

Performance optimizations and internal refactoring of sandbox isolation layer

Significant improvements to autocompletion feature with AI-based completion

Cache service now supports persisting data (as serialized in string) on the database

ProcessBuilder API now supports blocking attachments as work packages and resetting

roles in createDefinition()

WorkflowForm retrieved from the workflow work package now supports updates via map

assignment (task.forms.Form << aMap)

You can now use println() in scripts, in addition to "out"

Removed dependencies on helper CSServices (amsuihelper, cshelper, getLog, bwfhelper)

- now included in product core

Large Language Models (LLM) Integration¶

Introduced comprehensive support for OpenAI's Batch API for cost-effective,

asynchronous processing

•

•

•

•

•

•

•

•

•

30 Version 3.9.0 - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

Implemented service wrappers for OpenAI APIs including file management, evaluations

(evals), and fine-tuning

Enhanced CARL (Chat) widget integration in both Smart Pages IDE and Beautiful

WebForms IDE

Updated CARL chat widget to use Synchfusion widget, manage attachments, and support

Response API

For detailed information on LLM integration, see LLM Integration Guide

For OpenAI Batch Processing, Evaluations, and Fine-Tuning, see OpenAI APIs Guide

Model Context Protocol (MCP) Integration¶

Introduced support for Model Context Protocol (MCP) integration

Enables AI models to access external tools and resources through a secure, capability-

based negotiation system

Supports OAuth2 and custom authorization mechanisms

Provides seamless integration with OpenAI function calling

For detailed information on MCP integration, see MCP Integration Guide

SmartUI Commands¶

Introduced handlers for common SmartUI actions

Enhanced Smart Pages widgets with new capabilities:

Button widget can run actions without refreshing the view, shows a loader, and

publishes results to specified channels

QueryBuilder widget now supports an explicit "Filter" button

New widget for managing maps

Support for triggering CLEH actions via UI elements and publishing results on

ampagenotify channel

For comprehensive information on SmartUI commands, see SmartUI Commands Guide

Beautiful WebForms¶

AI-Based Form Builder: Introduced an experimental feature that enables designers to

create forms using natural language prompts. Instead of manually dragging and dropping

widgets, you can simply describe the form requirements, and C.A.R.L. (the AI assistant)

will automatically generate the form for you. The feature uses an agentic workflow

architecture with a coordinator agent and specialized widget agents working in parallel.

You can also use it to configure individual widgets without modifying the rest of the view.

All AI-generated changes require explicit user confirmation before being applied. For

detailed information, see AI-Based Form Builder

Enhanced SmartView Task view template with major optimizations

Support for UI elements triggering CLEH actions and event-based notifications via

ampagenotify

•

•

•

•

•

•

•

•

•

•

•

•

◦

◦

◦

•

•

•

•

•

31 Version 3.9.0 - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

../../working/ai/llm.md
../../working/ai/openai_apis.md
../../working/ai/mcp.md
../../working/smartui/commands.md

Updated SmartView Task Config widget to support auto-creation of confirmation modal

linked to a template's button

Allow client-side validation to target specific inputs via 'validation' data attribute with

comma-separated field IDs

New form widget for managing maps

Modified the way SmartUI resources are loaded in SmartView Task view Template

Adobe Sign Integration¶

Introduced Module Suite Extension for Adobe Sign

Comprehensive API for creating and managing signing agreements

Support for uploading documents, managing participants, and tracking agreement status

Webhook support for real-time notifications

OAuth 2.0 authentication with automatic token management

For detailed information on Adobe Sign integration, see Adobe Sign Integration Guide

Content Script¶

AI Autocompletion: Introduced intelligent, context-aware code suggestions directly within

the Script Editor. The feature analyzes both the full set of available Content Script APIs

and the current context of the script being edited to generate relevant completions.

Includes two configurable options:

Smart Completion: Enables AI-driven code suggestions (requires C.A.R.L.

integration to be properly configured and enabled)

Predictive Completion: Automatically precomputes possible code completions in

the background, storing them in a cache for enhanced responsiveness

New "htmlToText" API in Html extension package

Removed dependencies on cshelper and getLog CSServices (now included in product

core)

For detailed information on AI Autocompletion, see Script Editor - AI Autocompletion

Administration¶

Seal Content Script Versions: New administrative setting that blocks the creation of new

versions of Content Scripts by users with standard permissions. Only administrators and

those explicitly allowed to create scripts can modify versions, helping to ensure the

integrity of your productive environments

Limit Administrators: New administrative feature recommended on productive systems.

When activated, it restricts System Administration users from creating or updating

Content Scripts unless they are members of the Privilege group

For detailed information on these administrative features, see Module Suite

Administration Tools

•

•

•

•

•

•

•

•

•

•

•

◦

◦

•

•

•

•

•

•

32 Version 3.9.0 - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

../../working/adobesign/index.md

All Enhancements in version 3.9.0¶
ID Scope Description

#002191 Smart Pages
Update CARL chat widget in order to use Synchfusion widget,

manage attachments and support Response API

#002190
Beautiful

Webforms

Update CARL chat widget in order to use Synchfusion widget,

manage attachments and support Response API

#002151
Extension -

LLM
OpenAI's Batch API Support

#002163
Extension -

LLM

Implementation of different service wrappers for OpenAI APIs (file,

eval, finetuning)

#002188 Smart Pages Introduced handlers for common SmartUI actions

#002165 Smart Pages Integrate CARL (Chat) in SmartPage IDE

#002079 Module Suite Added German, French, and Italian support to Module Suite IDEs

#002157
Beautiful

Webforms
Integrate CARL (Chat) in BWF IDE

#002137 Core Improve objects and methods descriptions

#002146
Extension -

Cache

It is now possible to persist data (as serialized in string) on the

database

#002187 Module Suite You can now use println() in scripts, in addition to "out"

#002186 Module Suite
ProcessBuilder API now supports blocking attachments as work

packages and resetting roles in createDefinition()

#002185 Module Suite
WorkflowForm retrieved from the workflow work package now

supports updates via map assignment (task.forms.Form << aMap)

#002182 Module Suite
Updated dependencies for the PDF Viewer Template (PDF Viewer

Tool)

#002178 Smart Pages
Button can run actions without refreshing the view, shows a

loader, and publishes the result to a specified channel

#002177 Smart Pages Added an explicit "Filter" button to the QueryBuilder widget

#002160 Smart Pages New Smart Pages widget for managing maps

#002129 Content Script
Significant improvements to autocompletion feature + AI based

completion

#002069
Beautiful

Webforms

Support for UI elements triggering CLEH actions and event-based

notifications via ampagenotify

#002065 Smart Pages It's now possible to add a "filter" button on the Query Builder

33 Version 3.9.0 - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#002062
Beautiful

Webforms

Updated SmartView Task Config widget to support auto-creation

of confirmation modal linked to a template's button

#002029
Extension -

Html
New "htmlToText" API

#002078 Module Suite
Performance optimizations and internal refactoring of sandbox

isolation layer

#002077 Smart Pages
Remove dependency on amsuihelper CSService (now included in

product core)

#002076 Content Script
Remove dependency on cshelper, getLog CSService (now included

in product core)

#002075
Beautiful

Webforms

Remove dependency on bwfhelper CSService (now included in

product core)

#002071 Smart Pages
Trigger CLEH actions via UI elements and publish results on

ampagenotify channel

#002070
Beautiful

Webforms

Support for triggering CLEH actions via bwf:{formid}:action event

(ampagenotify) with enhanced execution control

#002068
Beautiful

Webforms

Allow client-side validation to target specific inputs via 'validation'

data attribute with comma-separated field IDs

#002066
Beautiful

Webforms

Major changes in "smartuiwftask" CSService to support changes in

SmartView Task view template (see 2064)

#002064
Beautiful

Webforms
Major optimization to SmartView Task view template

#002052
Beautiful

Webforms

Modified the way SmartUI resource are loaded in SmartView Task

view Template

#002053
Beautiful

Webforms
Minor optimizations to SmartView Task view template

#002159
Beautiful

Webforms
New form widget for managing maps

Issues Resolved in version 3.9.0¶
ID Scope Description

#002050 Smart Pages
The tiles marked as "non-contextual" are in any case reloaded when

you navigate, even if the perspective remains the same

#002184
Module

Suite
Malformed query in ModuleSuite Report

34 Version 3.9.0 - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#002183
Module

Suite

In ContentScript Engine, request parameters were sometimes

incorrectly converted into arrays

#002181
Module

Suite
Application Builder (custom for Builder) was not using deep merge

#002180 Smart Pages
Fixed an issue in the SmartView template that caused resources to

load incorrectly

#002176 Smart Pages
SmartView widget occasionally generates non-compilable code in

the Controller

#002152
Extension -

LLM
Bug fixes llm service (OPENAI Responses API)

#002147
Module

Suite
Bug fixes llm service

#002144
Module

Suite
Rotating the Mainlog file might cause an error

#002039
Module

Suite

Configuring the user session duration to be dependant on the last

login causes issues on the DA

#002067
Content

Script
Minor issue on "getLog" CSService

Version 3.8.0 (Venus)- Release notes¶

Release Date End of AMP(*) End of Life

2025-01-6 2028-01-6 2029-01-6

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and

known issues related to AnswerModules Modules Suite version 3.8.0.

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best

to ensure that, where necessary, is made clear that the information presented is only applicable to specific

versions, however if you are looking for this version-specific documentation, you can find it here (http://

developer.answermodules.com/manuals/3.8.0)

No Warranties and Limitation of Liability

35 Version 3.8.0 (Venus)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/3.8.0
http://developer.answermodules.com/manuals/3.8.0
http://developer.answermodules.com/manuals/3.8.0
http://developer.answermodules.com/manuals/3.8.0

Module Suite Compatibility Matrix¶
OpenText Content Server MS 3.3.0 MS 3.4.0 MS 3.5.0 MS 3.6.0 MS 3.7.0 MS 3.8.0

Content Suite 21.1 X X

Content Suite 21.2 X X

Content Suite 21.3 X X

Content Suite 21.4 X X

Content Suite 22.1 X X X X X

Content Suite 22.2 X X X X X

Content Suite 22.3 X X X X X

Content Suite 22.4 X X X X

Content Suite 23.1 X(*) X X X

Content Suite 23.2 X X X X

Content Suite 23.3 X X X X

Content Suite 23.4 X X X

Content Suite 24.1 X(**) X X

Content Suite 24.2 X X

Content Suite 24.3 X(***) X

Content Suite 24.4 X

Content Suite 25.1 X(****)

Content Suite 25.2 X(*****)

(*) Requires hotfix hotFix_ANS_340_010 to be installed

(**) Requires hotfix hotFix_ANS_360_009 to be installed

(***) Requires hotfix hotFix_ANS_370_003 to be installed

(****) Requires hotfix hotFix_ANS_380_007 to be installed

(*****) Requires hotfix hotFix_ANS_380_013 to be installed

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.

However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the

accuracy of this publication.

36 Version 3.8.0 (Venus)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

All Enhancements in version 3.8.0¶
ID Scope Description

#002001
Extension -

Retrofit

Introduced a new extension package, "Retrofit," as a Content

Script wrapper for the Retrofit library.

#002000
Extension -

PDF

Updated PDFBox dependency to version 3.0.3 for compatibility

and performance improvements.

#001999 Content Script
Introduced getActivities API in CSWorkflowInstance to retrieve the

complete activity history for a workflow instance.

#001945 Module Suite CSSearchResult does not return version

#001997
Beautiful

Webforms

Allow users to add an initial comment when initiating a workflow

from a form.

#001045 Module Suite
Include details about the limits enforced by the installed

activation key in the Base Configuration.

#001977 Module Suite Custom Form Builder now available outside Application Builder

Issues Resolved in version 3.8.0¶
ID Scope Description

#002025 Module Suite Absence of the form attributes causing form load issues (Backport)

#001959 Module Suite Absence of the form attributes causing form load issues

#001940
Extension -

LLM
Configuration regression. Issue with profiles

#002016 Module Suite
Log records with special characters are displayed incorrectly in

Script Editor (backport)

#001991 Module Suite
Log records with special characters are displayed incorrectly in

Script Editor

#002015 Module Suite Blazon extension for Content Script does not work (backport)

#001975 Module Suite Blazon extension for Content Script does not work

#002014 Module Suite
Unable to submit form in case of form row duplicate into the

Database (backport)

#001994
Extension -

Docx
Issue with html field into docx document

#001967 Module Suite Select View Params Widget Showing Error

#001954 Module Suite
Workflow getComments API does not return initial workflow

comment

37 Version 3.8.0 (Venus)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001951
Extension -

Docx

Track Changes comments in a docx show errors when retrieved via

the listComments api

#001984 Module Suite
JDBC ignores profile settings for internal otcs profile. Missing

database drivers may impact performance on certain env

#001955 Module Suite Wikipage subtype is -1

#001887 Module Suite
Feature request. ADd new methods purge and restore, as in REST

API

#001968 Module Suite
Unable to submit form in case of form row duplicate into the

Database

#001998 Smart Pages
Disabling SmartView cache has no effect on commands when the

Content Script Volume cache remains enabled.

#001958 Module Suite Memcache errors while custom templates enabled

#001996
Beautiful

Webforms
The submission of a BWF in a workflow fails in xECM 24.4

#001960 Module Suite
ADN ID once generated does not record correct Quantity after

Form reload

#001344
Beautiful

Webforms
Partial Label - missing for attribute error

#001834
Beautiful

Webforms

Smart Dropdown is not handling values correctly when they

contains a comma

#001933 Module Suite Tile Content Script Nodes Table issue

#001964 Module Suite OT patch is breaking Beautiful Webform display

#001932 Module Suite xECM SPI method GetBusinessObjectQueryFormBulk is not executed

#001961 Module Suite
Performance degradation detected on SmartUI when modules are

not configured

#001928 Module Suite SmartDropDown widget problems

#001772 Module Suite Missing docman methods in the online help

#001577
Content

Script

After upgrade to 3.3, it is not possible edit WorkFlows that have a

Content Script Step

#001630
Content

Script

Generic error "No such property: csModulePath" is raised

downloading cs.log for all the users, excluding Admin

#001868 Module Suite GroupName method within users service issue

#001978 Module Suite PDF document generation issues

#001981 Module Suite Custom column issue

38 Version 3.8.0 (Venus)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001983
Beautiful

Webforms

"Column Headers" widget: setting the value to a new row using the

context menu modifies the starting row too

#001943 Module Suite Fixed various issues in the Application Builder

#001950 Module Suite
Error after saving a view created with the Custom Form Builder of

the Application Builder

#001937 Module Suite Typo error when Search on a specific slice

Version 3.7.0 (Earth)- Release notes¶

Release Date End of AMP(*) End of Life

2024-07-12 2027-07-12 2028-07-12

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and

known issues related to AnswerModules Modules Suite version 3.7.0.

Module Suite Compatibility Matrix¶
OpenText Content Server MS 3.2.1 MS 3.3.0 MS 3.4.0 MS 3.5.0 MS 3.6.0 MS 3.7.0

Content Suite 21.1 X X X

Content Suite 21.2 X X X

Content Suite 21.3 X X X

Content Suite 21.4 X X X

Content Suite 22.1 X X X X X

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best

to ensure that, where necessary, is made clear that the information presented is only applicable to specific

versions, however if you are looking for this version-specific documentation, you can find it here (http://

developer.answermodules.com/manuals/3.7.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.

However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the

accuracy of this publication.

39 Version 3.7.0 (Earth)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/3.7.0
http://developer.answermodules.com/manuals/3.7.0
http://developer.answermodules.com/manuals/3.7.0
http://developer.answermodules.com/manuals/3.7.0

OpenText Content Server MS 3.2.1 MS 3.3.0 MS 3.4.0 MS 3.5.0 MS 3.6.0 MS 3.7.0

Content Suite 22.2 X X X X X

Content Suite 22.3 X X X X

Content Suite 22.4 X X X

Content Suite 23.1 X(*) X X

Content Suite 23.2 X X X

Content Suite 23.3 X X X

Content Suite 23.4 X X

Content Suite 24.1 X(**) X

Content Suite 24.2 X

Content Suite 24.3 X(***)

(*) Requires hotfix hotFix_ANS_340_010 to be installed

(**) Requires hotfix hotFix_ANS_360_009 to be installed

(***) Requires hotfix hotFix_ANS_370_003 to be installed

SASL Memcache Authentication Support¶

Module Suite 3.7.0 introduces support for SASL memcache authentication. When enabling this

feature on OTCS, follow these important steps:

New Feature: Improved Support for Long Identifiers

Module Suite 3.7.0 introduces enhanced support for very long identifiers. If your environment utilizes long

identifiers, you can enable this improved support through the Module Suite Base Configuration.

To enable this feature:

Navigate to the Module Suite Base Configuration settings.

Locate the option for long identifier support.

Enable the feature as needed.

For detailed instructions, refer to our Base Configuration documentation (/manuals/3.7.0/administration/

modulesuite/#base-configuration).

1.

2.

3.

Single Thread Client Configuration

Ensure that the cache is configured to use a single thread client. To do this:

Navigate to the Module Suite base configuration.

Locate the amcs.cache.mode.default property.

Set its value to single.

1.

2.

3.

40 Version 3.7.0 (Earth)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

/manuals/3.7.0/administration/modulesuite/#base-configuration
/manuals/3.7.0/administration/modulesuite/#base-configuration
/manuals/3.7.0/administration/modulesuite/#base-configuration
/manuals/3.7.0/administration/modulesuite/#base-configuration

Steps to Enable SASL Memcache Authentication¶

Configure the cache to use a single thread client as described above.

Enable SASL authentication in your OTCS settings.

Save the base configuration to apply the changes.

Module Suite 3.7.0 Breaking Changes¶

Module Suite 3.7.0 it's based on Groovy 4. Groovy 4 builds upon existing features of earlier

versions of Groovy. In addition, it incorporates numerous new features and streamlines various

legacy aspects of the Groovy codebase.

Important naming/structuring changes¶

Maven coordinate change¶

In Groovy 4.0, the groupId of the maven coordinates for Groovy have changed from

org.codehaus.groovy to org.apache.groovy.

Configuration Reload Required

After enabling SASL authentication on OTCS, you must save the Base Configuration to force a configuration reload.

1.

2.

3.

Major Groovy Version Update

This release includes a significant update from Groovy 3.0.19 to Groovy 4.0.20. This is a major version change that

introduces new features, improvements, and breaking changes. Users should carefully review their existing Groovy

code and dependencies for compatibility issues. Key points to note:

Several breaking changes, including removal of the old parser and classic bytecode generation

New features like switch expressions, sealed types, and records (some incubating)

Performance improvements, especially for GString

Changes in JDK requirements (JDK16+ to build, JDK8+ to run)

Some modules and classes have been removed or relocated

Please refer to the Groovy 4.0 release notes for a comprehensive list of changes and migration guidance.

•

•

•

•

•

Note

WARNING: Some features of Groovy 4 are designated as "incubating". Where appropriate, related classes or APIs of

these features may be annotated with the @Incubating annotation. Caution should be exercised when using

incubating features as the details may change in subsequent versions of Groovy. We don't recommend using

incubating features for production systems.

41 Version 3.7.0 (Earth)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

Legacy package removal¶

The Java Platform Module System (JPMS) requires that classes in distinct modules have distinct

package names (known as the "split packaging requirement"). Groovy has its own "modules"

that weren't historically structured according to this requirement.

Groovy 3 provided duplicate versions of numerous classes (in old and new packages) to allow

Groovy users to migrate towards the new JPMS compliant package names. See the Groovy 3

release notes for more details. Groovy 4 no longer provides the duplicate legacy classes.

In short, time to stop using groovy.util.XmlSlurper and start using groovy.xml.XmlSlurper. Similarly,

you should now be using groovy.xml.XmlParser, groovy.ant.AntBuilder, groovy.test.GroovyTestCase and

the other classes mentioned in the prior mentioned Groovy 3 release notes.

New features¶

Switch expressions¶

Groovy has always had a very powerful switch statement, but there are times when a switch

expression would be more convenient.

Sealed types¶

Sealed classes, interfaces and traits restrict which other classes or interfaces may extend or

implement them. Groovy supports using a sealed keyword or a @Sealed annotation when

writing a sealed type.

Records and record-like classes (incubating)¶

Groovy 4 adds support for native records for JDK16+ and also for record-like classes (also

known as emulated records) on earlier JDKs.

def result = switch(i) {
case 0 -> 'zero'
case 1 -> 'one'
case 2 -> 'two'
default -> throw new IllegalStateException('unknown number')

}

sealed interface Tree<T> {}
@Singleton final class Empty implements Tree {

String toString() { 'Empty' }
}
@Canonical final class Node<T> implements Tree<T> {

T value
Tree<T> left, right

}

42 Version 3.7.0 (Earth)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

Built-in type checkers¶

From Groovy 4, we bundle some select type checkers within the optional groovy-typecheckers

module, to encourage further use of this feature.

GINQ, a.k.a. Groovy-Integrated Query or GQuery (incubating)¶

GQuery supports querying collections in a SQL-like style.

Other improvements¶

GString performance improvements

Enhanced Ranges

Support for decimal fraction literals without a leading zero

JSR308 improvements (incubating)

AST transformation priorities

Legacy consolidation¶

Old parser removal

Classic bytecode generation removal

JDK requirements¶

Groovy 4.0 requires JDK16+ to build and JDK8 is the minimum version of the JRE that we

support. Groovy has been tested on JDK versions 8 through 17.

record Cyclist(String firstName, String lastName) { }

@TypeChecked(extensions = 'groovy.typecheckers.RegexChecker')
def whenIs2020Over() {

def newYearsEve = '2020-12-31'
def matcher = newYearsEve =~ /(\d{4})-(\d{1,2})-(\d{1,2}/

}

from p in persons
leftjoin c in cities on p.city.name == c.name
where c.name == 'Shanghai'
select p.name, c.name as cityName

•

•

•

•

•

•

•

43 Version 3.7.0 (Earth)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

All Enhancements in version 3.7.0¶
ID Scope Description

#001860 Smart Pages New Sync PDF Viewer Widget

#001858 Smart Pages New Kanban Widget

#001923 Module Suite
Updated Synchfusion based widgets after having updated the

dependency (25.1.35)

#001922 Smart Pages
Added a self-contained method one can use to render

programmatically a Smart Page

#001920 Module Suite Introduction of a new object-based licensing model

#001919 Module Suite
Uniformed the look and feel of ModuleSuite admin csscripts to OT

administrative pages

#001918 Content Script Updated Velocity macro #csresource

#001917
Extension -

OAuth

It is now possible to use SYSTEM as the storage policy (it will use

System Data under the hood).

#001916
Extension -

OAuth
It is now possible to register an OAuth Profile on the fly

#001914
Extension -

LLM

Introduced dedicated openai Service, added Langchain4j

dependency to support more models

#001913
Extension -

JDBC

Enable encryption for connection towards internal MSSQL

database

#001912
Extension -

Docx
Improved the way comments are extracted from a document

#001911 Module Suite
Removed dependency from groovy-wslite. Bumped soa-model-

core dependency to 2.0.1

#001910 Module Suite
Enabled OT Memcache SASL support. Updated dependencies and

added support for a new non-pooled memcache client.

#001908 Module Suite
All services in the serviceContext now receive a notification when

the ContentScriptManager updates the serviceConfiguration.

#001899 Module Suite
New APIs to set and get ModuleSuite related system data

configuration

#001909 Module Suite
Autocompletion now provides correct information about internal

service's ContentScriptAPI objects

#001907 Module Suite
Optimization of the process used to retrieve the current version of

a node

#001882

44 Version 3.7.0 (Earth)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Beautiful

Webforms

New APIs to manage the extended definition of category and form

template

#001852
Beautiful

Webforms

Added Group Settings configuration to the Grid widget (Initial

grouping)

#001849 Smart Pages
Added Group Settings configuration to the Grid widget (Initial

grouping)

#001863 Smart Pages Enabled context menu integration for the Grid widget

#001862
Beautiful

Webforms
Enabled context menu integration for the Grid widget

#001872 Module Suite Update Handlebars runtime javascript to version 4.7.8

#001873 Module Suite
In Content Script Editor and BWF Smart Editor updated jquery and

lodash library (3.7.1, 4.17.21)

#001894 Module Suite
New application 'Form Workflow Dashboard' of the Application

Builder tool

#001881
Beautiful

Webforms

New 'XENGADN Dropdown' widget to manage the 'ADN table key

lookup' field

#001831 Module Suite Docbuilder: How to justify a paragraph

#001827 Module Suite
Re-import of an existing Template Folder is not supported by the

Transport Warehouse

#001718
Beautiful

Webforms

It is possible to configure a button in the footer of the 'SmartView

Task'(V4) template to open a Modal Container

#001813 Module Suite
Useless call to GetNodeFast to retrive the Version of a Script that

has been loaded with getNodesFast method

#001654 Smart Pages
Re-import of an existing SmartPage is not supported by the

Transport Warehouse

#001935 Rend
Changed default rendition engine from (wkhtmltopdf which is now

deprecated) to rend

Issues Resolved in version 3.7.0¶
ID Scope Description

#001896 Module Suite
xECM SPI method GetBusinessObjectQueryFormBulk is not

executed

#001759 Module Suite rhRequest not working

#001883 Module Suite Modification of public rights issue

45 Version 3.7.0 (Earth)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001761 Module Suite info.pageCount wrong results on word generation

#001904 Script Console
Script Console sample security configuration does not activate

CSRF protection to Remote WebForms extension urls

#001832 Module Suite SFTP configuration issue

#001816 Module Suite
Business Application using a connector type from xECM for

Everything causing trace files

#001843 Module Suite
Setting classification results in error 'could not login with

cookie'

#001886 Module Suite
Big integer DataID (= 10000000000) returned incorrectly in

Content Script

#001892 Content Script
It is not possible to set "SQL Table" as the storage mechanism

of a workflow form via the workflow process builder

#001897 Module Suite

Error when a new version is added to a workflow attachment

via the 'Workflow attachments' section of 'SmartView Task'

template

#001898
Beautiful

Webforms

Minor visualization issues on CARL widget (widget's height non

properly set)

#001850 Module Suite
Smart Dropdown widget not working correctly when switch to

another tab

#001806 Module Suite Rest call delay and session expiration

#001871 Module Suite Workflow update step package instructions API issue

#001369 Module Suite Issue in the Base Configuration page

#001835 Smart Pages In some cases odata crud operations return an error

#001879 Module Suite ADN Reference field implementation (or ADN ID upgrade)

#001867
Beautiful

Webforms

The ADN Dropdown widget fails to retrieve ADN table key

lookup values

#001895 Module Suite Space Content Widget issue

#001878
Online

Documentation
Flag name for message leads to imap error fetching mail

#001876
Online

Documentation

Documents without extension when temporary file crated, dot

is added

#001844 Module Suite Version Content Fails If Document name is not FS compatible

#001853 Module Suite Anscontentsmartui module during Download create a trace file

#001884 Module Suite

46 Version 3.7.0 (Earth)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Default value set on BWF widgets overrides current non-empty

form field value when loading a previously submitted form

#001784 Module Suite Using i18n map in Content Script for a locale

#001767 Module Suite
Script Editor does not show snippets after the full Snippets

import in MS 3.5 (after Blazon snippet import)

#001837 Module Suite Field not emptied with Smart DropDown

#001855 Module Suite Smart Dropdown Validation rises even if it has a value set

#001838 Module Suite Smart Dropdown Breaking in Set

#001775 Module Suite
Updated dependencies presenting risks related to security

vulnerability

#001847 Module Suite
Issue with removing categories from nodes. The script

terminates correctly but the categories are not removed.

#001840 Smart Pages Search time keeps adding on

#001823
Beautiful

Webforms

The getFormInfo method loads incorrect information in the

definition of fields belonging to a set

#001758 Module Suite Cache.touch method not working as expected

#001822
Beautiful

Webforms

Submitting a Content Server Versions form with unchecked

checkboxes using forms.submitForm API will result in invalid

data

#001826 Smart Pages
Using the Include Web Form widget, fields with the error are

not highlighted

#001812 Module Suite Fixed various issues in the Application Builder

#001825 Module Suite AM Logo is not up-to-date in the Velocity macro

#001708 Module Suite
Application Builder: In the 'Document Builder' application, the

'Panel Container Toolbar' widget is not displayed in the form

#001707 Module Suite
Application Builder: It is not possible to create the 'Create and

Approve' application

#001790 Content Script
Using the new Extension for Extended ECM for Engineering the

generated transmittal 'Load sheet' is a csv instead of an xlsx

#001808 Content Script
The overrides of the anscontentscript module are not loaded in

the correct order

#001824 Extension - xECM
When creating a BWS if the attached category has a default

Date applied the creation fails

#001755 Module Suite Typo error in Custom Script Widget

47 Version 3.7.0 (Earth)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001558
Beautiful

Webforms

BWF Editor: opening the editor can require more that 10

seconds

#001788 Module Suite Content Script static variables incorrect Long conversion

#001810 Content Script The escapeXML method of the html API does not work

#001786 Extension - xECM

The fluent api newBusinessWorkspaceCreationRequest to

create the BWS (xecm API) does not create the Transmittal

workspace

#001809 Extension - xECM
Run Content Script Action in Event Bots Configuration page

can't be properly configured

#001807 Extension - LLM Error when defining a new function

#001785 Smart Pages
The Grid widget does not pass the parameter to the odata

service.

#001789
Beautiful

Webforms

The docman.getNode().update() method returns an error when

trying to update the Beautiful Form

#001793 Content Script
Module Suite notifications in the 'Notification Center' do not

display the header title correctly

#001787 Content Script
The getFacetsVolume() method of the docman api returns the

wrong volume

#001163
Online

Documentation
Review license pages

#001072
Online

Documentation
Requirements page is not updated

#001115
Online

Documentation
Installing Extension Packages

#001418
Online

Documentation
Add a note to remove CSSystem

#001666
Online

Documentation
Dead link in Getting Started page

#001650
Online

Documentation
Add deprecation information for wkhtmltopdf rendition method

#001658
Online

Documentation
Wrong anchor link in Callback documentation page

#001671
Online

Documentation

Module Suite documentation page "Installing on a clustered

environment" is incomplete for the reconcile of opentext.ini file

#001673

48 Version 3.7.0 (Earth)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Online

Documentation

Broken link on the "Deploy on Windows" documentation page

in SAP extension section

#001783
Online

Documentation

Missing extension when renaming war files in paragraph "What

to do if the installer raises the error: Unable to automatically.."

#001796
Online

Documentation
Impersonation documentation of the API is missing

#001889
Online

Documentation

Add mandatory Module Suite Extensions to Deployment guide

on Developer Website

#001890
Online

Documentation

Enabling OT Memcache SASL requires to save the

AnswerModules Base Configuration

#001876
Online

Documentation

Documents without extension when temporary file crated, dot

is added

Dependencies updated in version 3.7.0¶
Library Previous Version New Version

groovy 3.0.19 4.0.20

commons-logging 1.2 1.3.1

commons-validator 1.7 1.8.0

commons-text 1.11.0 1.12.0

commons-email 1.5 1.6.0

commons-net 3.9.0 3.10.0

commons-io 2.13.0 2.16.1

commons-lang3 2.13.0 3.14.0

commons-codec 1.11.0 1.17.0

okhttp 4.11.0 4.12.0

jackson-databind 2.13.5 2.17.1

log4j-api 2.20.0 2.23.1

slf4j-api 2.0.6 2.0.13

handlebars 4.3.1 4.3.1

fop 2.8 2.9

gpars removed

c3p0 0.9.5.5 0.10.1

49 Version 3.7.0 (Earth)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

Library Previous Version New Version

httpclient 4.5.13 4.5.14

http-builder removed

pdfbox 2.0.26 2.0.31

guava 11.0.1 33.2.0-jre

javaparser-core 0.9.1 1.5.2

jsoniter removed

aws-java-sdk 1.12.490 1.12.723

woodstox-core 6.5.1 6.6.2

Version 3.6.0 (Genève)- Release notes¶

Release Date End of AMP(*) End of Life

2023-11-26 2026-11-26 2027-11-26

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and

known issues related to AnswerModules Modules Suite version 3.6.0.

Module Suite Compatibility Matrix¶
OpenText Content Server MS 3.2.0 MS 3.2.1 MS 3.3.0 MS 3.4.0 MS 3.5.0 MS 3.6.0

Content Suite 21.1 X X X X

Content Suite 21.2 X X X X

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best

to ensure that, where necessary, is made clear that the information presented is only applicable to specific

versions, however if you are looking for this version-specific documentation, you can find it here (http://

developer.answermodules.com/manuals/3.6.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.

However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the

accuracy of this publication.

50 Version 3.6.0 (Genève)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/3.6.0
http://developer.answermodules.com/manuals/3.6.0
http://developer.answermodules.com/manuals/3.6.0
http://developer.answermodules.com/manuals/3.6.0

OpenText Content Server MS 3.2.0 MS 3.2.1 MS 3.3.0 MS 3.4.0 MS 3.5.0 MS 3.6.0

Content Suite 21.3 X X X X

Content Suite 21.4 X X X X

Content Suite 22.1 X X X X X

Content Suite 22.2 X X X X

Content Suite 22.3 X X X

Content Suite 22.4 X X

Content Suite 23.1 X(*) X

Content Suite 23.2 X X

Content Suite 23.3 X X

Content Suite 23.4 X

Content Suite 24.1 X(**)

(*) Requires hotfix hotFix_ANS_340_010 to be installed

(**) Requires hotfix hotFix_ANS_360_009 to be installed

All Enhancements in version 3.6.0¶
ID Scope Description

#001726 Content Script
xECM for Everything - Internal paging details are currently not

passed in "listBusinessObjectsWithFilters" function

#001070
Online

Documentation
[Documentation] All the links in Packages page are broken

#001738 Smart Pages
SmartPage Widgets are now loaded from the entire volume (as

for BWF Widgets)

#001654 Smart Pages
Re-import of an existing SmartPage is not supported by the

Transport Warehouse

#001709 Smart Pages
SmartView Actions scripts are invoked twice when the nodes

metadata page is displayed

#001714 Module Suite Flatpickr widget - czech language

#001740 Module Suite CARL Tool (widgets, and llm service) update

#001751 Module Suite
Application Builder Update: Significant Server-Side Form

Builder Enhancements

#001750
Beautiful

Webforms

Enhancement: Full Path Specification for Script Snippets in

BWF Widgets

51 Version 3.6.0 (Genève)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001749 Smart Pages
Enhancement: Full Path Specification for Script Snippets in

SmartPage Widgets

#001748
Beautiful

Webforms

New Widget Introduction: Spreadsheet for Enhanced User

Experience

#001730
Beautiful

Webforms
Improved usability on FormBuilder

#001747
Beautiful

Webforms

Enhancement of Server-Side Rendering Support with

layoutItems Variable in Handlebars Widget Templates

#001107
Online

Documentation
Java version required for the Script Console

#001086
Online

Documentation
Script Console configuration page: specify better the port

#001081
Online

Documentation
Little change in Event/Callback page

Issues Resolved in version 3.6.0¶
ID Scope Description

#001727 Module Suite Issue with attachment file name UTF-8

#001647 Module Suite
Enhance CSWS API documentation: describe the new methods

and provide examples on how replace deprecated ones

#001705 Module Suite
It is not possible to update a BWF via admin.importXml API or

via Transport Warehouse.

#001262
Online

Documentation
Missing page with requrements for the Script Console

#001257
Online

Documentation

Missing one step for Content Script scheduling in Script

Console

#001255
Online

Documentation
Little error in Administrative page

#001232
Online

Documentation
SAP extension: little changes in doc page

#001093
Online

Documentation
Tag Guide of WebReport: there is an error

#001092
Online

Documentation
Wrong method description in the API helper

#001089

52 Version 3.6.0 (Genève)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Online

Documentation

Beautiful Webforms views updater page: broken link and

clarification

#001782 Module Suite Smart View Task: Upload Area: Icon for shortcuts

#001766 Module Suite Smart View Task: Upload Area: Icon for shortcuts

#001781 Module Suite Error when using Custom Script widget in Smart Page

#001764 Module Suite Error when using Custom Script widget in Smart Page

#001757 Module Suite
Error exporting remote webform with a template that has a

Set with more than 1 row

#001737 Module Suite Sidebar issues

#001717 Module Suite
Smart Page widget Container:Standard Nodetable not working

starting from MS 3.4

#001087
Online

Documentation
Classic UI page: broken links

#001085
Online

Documentation
Broken link in admin page

#001084
Online

Documentation

Doubt: two pages with instruction to how embed BWF in Smart

UI

#001083
Online

Documentation
Page Writing and executing scripts

#001079
Online

Documentation
Content Script Extension for SAP: graphical issue

#001076
Online

Documentation
Content Script editor: some problem and one error

#001075
Online

Documentation
Page Content Server object: strange formatting and two footers

#001074
Online

Documentation
Installing Smart Pages: is it possible review?

#001739 Module Suite Missing inline documentation for new extension packages

#001773 Smart Pages
Custom Script Widget contains an error. Underscore library is

not associated with the _ symbol.

#001289 Content Script
Tile News RSS Feed: when you add the widget and save, no

code is added

#001728 Module Suite Vulnerable JavaScript

#001763 Missing docman methods in the online help

53 Version 3.6.0 (Genève)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Online

Documentation

#001754 Module Suite Document builder process issue

#001770 Module Suite
jQuery Interdependencies widget limits the number of form

fields that can be selected for the Rule's Dependencies section

#001745 Module Suite
jQuery Interdependencies widget limits the number of form

fields that can be selected for the Rule's Dependencies section

#001769 Module Suite
amgui doesn't display date according to language choose in

settings

#001768 Module Suite Issue on watermark

#001756 Module Suite Issue on watermark

#001744 Module Suite
amgui doesn't display date according to language choose in

settings

#001711 Smart Pages SmartPages Custom Panel information

#001553 Smart Pages
The custom command in SmartUI does not work in custom

search

#001694
Beautiful

Webforms

It is not possible to set a dynamic default value to the

Flatpickr widget (V4)

#001732 Module Suite View and template do not change using Transfer Warehouse

#001731 Module Suite View and template do not change using Transfer Warehouse

#001710
Beautiful

Webforms
Checkboxes selection is ignored on Form reload

#001712
Beautiful

Webforms

The 'SmartView Task Configuration' (V4) widget does not show

the side panel when used outside of a workflow step

#001746
Beautiful

Webforms

Handlebars Template Fix for Consistent Client and Server-Side

Validation in Widgets

#001703 Content Script "Make Favorite" error in "Functions" Menu

#001702 Content Script "Make Favorite" error in "Functions" Menu

#001293
Beautiful

Webforms

Creating a custom column having a content script as a data

source does not terminate on PostgreSQL

#001706 Smart Pages
Smart View does not complete loading on xECM 23.3 when MS

3.5 is installed

#001402
Online

Documentation
Module Suite Administration Tools - Select default IP address

54 Version 3.6.0 (Genève)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001405
Online

Documentation
Typo error in Getting ready to upgrade Module Suite page

#001357
Online

Documentation
Tooltip for buttons in CS Editor (very minor)

#001172
Online

Documentation
Missing note about the path for the cs.log

#001077
Online

Documentation
Minor typo errors or minor graphical issue

#001078
Online

Documentation
Minor doubt on Form builder page

#001073
Online

Documentation
Installation pages: minor issue

#001071
Online

Documentation
Typo error in the left tree

#001663
Beautiful

Webforms

Error Widget and Go Link Functionality Not Working in Forms

with Multiple Tabs

Version 3.5.0 (Rome)- Release notes¶

Release Date End of AMP(*) End of Life

2023-08-02 2026-08-02 2027-08-02

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and

known issues related to AnswerModules Modules Suite version 3.5.0.

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best

to ensure that, where necessary, is made clear that the information presented is only applicable to specific

versions, however if you are looking for this version-specific documentation, you can find it here (http://

developer.answermodules.com/manuals/3.5.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.

However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the

accuracy of this publication.

55 Version 3.5.0 (Rome)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/3.5.0
http://developer.answermodules.com/manuals/3.5.0
http://developer.answermodules.com/manuals/3.5.0
http://developer.answermodules.com/manuals/3.5.0

Module Suite Compatibility Matrix¶
OpenText Content Server MS 3.1.0 MS 3.2.0 MS 3.2.1 MS 3.3.0 MS 3.4.0 MS 3.5.0

Content Suite 16.2 EP6 X

Content Suite 16.2 EP7 X

Content Suite 20.2 X X X X X

Content Suite 20.3 X X X X X

Content Suite 20.4 X X X X X

Content Suite 21.1 X X X X X

Content Suite 21.2 X X X X X

Content Suite 21.3 X X X X X

Content Suite 21.4 X X X X X

Content Suite 22.1 X X X X

Content Suite 22.2 X X X

Content Suite 22.3 X X

Content Suite 22.4 X

Content Suite 23.1 X(*)

Content Suite 23.2 X

Content Suite 23.3 X

(*) Requires hotfix hotFix_ANS_340_010 to be installed

All Enhancements in version 3.5.0¶
ID Scope Description

#001699 Module Suite
It is now possible to control the logging level for classes

annotated as @ContentScriptAPIService

#001291
Beautiful

Webforms
Password field widget

#001664 Smart Pages Added new windows10 icons

#001674 Module Suite
Release of New Widgets: Classifications, Toolbar, TreeView,

ListView, and Grid

#001698 Smart Pages Release of New Widgets: Toolbar and Grid

#001685 Module Suite
Introduction of CARL: AI agent for Enterprise Application Creation

on XECM and Module Suite

56 Version 3.5.0 (Rome)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001678
Beautiful

Webforms

Introduction of WCAG Compliant Widget Library Based on V4

Version

#001686 Module Suite
Introduction of "rmsec" Extension Package for Enhanced Record

Management Security

#001697
Extension -

PDF
New Feature - APIs for Text Extraction from PDF Files

#001696
Extension -

Docx

Docx Extension Package Update: Revised Dependencies and

Dropped Java 8 Compatibility

#001687 Module Suite
Introduction of "llm" Extension Package for LLM API Provider

Integration

#001263 Content Script Rolling of the cs.log file

#001695 Module Suite
Enhancements to Process Builder API - Introduction of "Step,"

"End," and Automatic Addition of Scripts and Forms

#001644 Content Script
The getLeader() method over a CSGroup object raises a

NullPointerException if there isn't an user set as group leader

#001693 Module Suite Adding Multiple Documents and Recipients to a CSEmail Object

#001692 Module Suite New Feature: Internal API Now Supports File-Returning REST APIs

#001690 Module Suite
New "docman" APIs: getNodeData and getNodeDataAsJsonString

for Node Information Retrieval

#001689 Module Suite
New API Introduced in DocmanService to Retrieve SubType Integer

of Module Suite Objects

#001688 Module Suite
New APIs Introduced in CSDocument for Raw Content Extraction

and Thumbnail Retrieval

#001680
Beautiful

Webforms

Minor Fixes Required on SmartView Task View Template of Library

V5

#001675 Module Suite
Deprecation of "View Smart Task Button" Widget and Introduction

of "Smart View Task Configuration" Widget

#001681
Beautiful

Webforms

Update on Code Generation from Form Builder: Snippet Storage

Location Change

#001679
Beautiful

Webforms
New Release: Enhanced SmartView Task View Template

#001677 Smart Pages
Update on V5 Tabs Widget: Specifying Active Tab and Executing

Actions Upon Selection

#001624
Beautiful

Webforms

Improved performances for smart-dropdown widgets (and its

derivatives) by enabling client-side caching

57 Version 3.5.0 (Rome)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

Issues Resolved in version 3.5.0¶
ID Scope Description

#001554 Smart Pages
Issue if a Smart UI Custom Menu is added on multiple

subtypes of the same parent

#001659 Content Script
Classic UI customizations for CSMenu don't work and return a

generic Content Server error

#001670
Beautiful

Webforms

Form.listformdata Method Fails and Generates Trace After

Modifying Form Template

#001323 Content Script Issue of the listFormData method of the forms service

#001285
Beautiful

Webforms
Random validation error with the Phone widget

#001634
Extension -

OAuth

OAuth service error messages incorrectly reference "AWS" Base

Configuration profile instead of OAuth profiles

#001625 Module Suite
Generic HTTP 404 error opening Web Help from Content Script/

Smart Page Editor or from Form Builder

#001520 Content Script
Recman extension: removeOfficial method doesn't restore the

original permission

#001591 Content Script
Module Suite Report: the section about Base Configuration is

empty

#001656 Content Script
Insufficient permissions in Content Script Volume

'CSSmartView' folder causing unclear errors in cs.log

#001660 Content Script Cache API connection hungs after a Content Server restart

#001646 Extension - Docx
The method replaceVariables of docx API removes white

spaces replacing a placeholder

#001617 Content Script
Docx4j Marshaller: Issues parsing docx documents produced

with the Sync extension

#001691 Module Suite
Fixed Issues with docman.getNodeRestV1JSon API and

node.toJSONObject API

#001594 Content Script
Mail Service: Fetching issue for emails with attachments

named containing "/" character

#001464
Beautiful

Webforms

PWA: Exceptions are raised by the Vue devtools reference in

the bwfv5.umd.min.js script.

#001682
Beautiful

Webforms

Fix for Issue with FormBuilder Configuration Panel -

Itemreference Configuration

#001580 Content Script Custom logs are written to a wrong file

58 Version 3.5.0 (Rome)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001421 Content Script
Custom log appender: on rotation, a wrong data is used for the

file name

#001652
Beautiful

Webforms

User by Login Widget: Read-only mode allows value change

using keyboard navigation

#001651
Beautiful

Webforms

Graphical elements (like sort arrows and checkboxes) are not

visualized for Datatable widget with OpenText template

#001616 Content Script
Page with Content Scripts list for Workflow: wrong label in

remove alert popup

#001672 Module Suite
Issue with createDocument API in Recent Content Server

Versions (20.X and above)

#001657 Content Script
When WebNodeActions script does not redirect to any page, a

blank page may appear for some OTCS actions

#001599
Beautiful

Webforms
Integer field in a Set are empty in Beautiful WebForm

#001619
Beautiful

Webforms

Form Builder (Smart Editor) layout issue with V3 widget library

(regression)

#001631
Extension -

Rendition

Printing a BWF form to PDF using rend API contains

visualization errors when user is not Admin

#001653 Extension - xECM
When referenced object does not exists, ECM initialization

script fails avoiding startup of the Content Server service

#001622 Extension - Docx
Content Script fails with a generic 400 error setting properties

in a MS Word document with method setProperties

#001642 Module Suite Various Improvements and Bug Fixes for Application Builder

#001414
Online

Documentation

Upgrading Module Suite: restore restart after each module

update

#001639 Module Suite
The import tool does not notify that some widgets should be

updated

#001627 Smart Pages

CSSmartView features: custom columns and custom

commands are not shown with Module Suite running on

Content Server 21.x

#001620
Beautiful

Webforms

Issue with associating multiple forms having the same

template with a workflow map

#001628 Smart Pages
Issue with the "Include SmartUI widget" widget: the data

source script is never invoked

#001636 Module Suite

59 Version 3.5.0 (Rome)- Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Scripting engine initializes without activation key and basic

configuration

#001615 Content Script
The 'getGroupByName' method of the 'users' service does not

work

#001626 Content Script

The getGroupByName method of the user service raises a

generic OML Exception with Module Suite running on Content

Server 21.x

#001623 Module Suite
The library import tool does not work properly on Windows in

case OTCS has been installed under a path containing spaces.

#001609 Content Script
The getElementsByPath method raises a NullPointerException

if called without root parameter for non administrator users

#001621 Content Script

The getGroupById method of the user service raises a

ClassCastException if it's called using a user's identifier as a

parameter

#001607 Content Script
DocBuilder: error generating PDF with Cyrillic alphabet

characters

Version 3.4.0 (Rancate) - Release notes¶

Release Date End of AMP(*) End of Life

2023-02-02 2026-02-02 2027-02-02

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and

known issues related to AnswerModules Modules Suite version 3.4.0.

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best

to ensure that, where necessary, is made clear that the information presented is only applicable to specific

versions, however if you are looking for this version-specific documentation, you can find it here (http://

developer.answermodules.com/manuals/3.4.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.

However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the

accuracy of this publication.

60 Version 3.4.0 (Rancate) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/3.4.0
http://developer.answermodules.com/manuals/3.4.0
http://developer.answermodules.com/manuals/3.4.0
http://developer.answermodules.com/manuals/3.4.0

Module Suite Compatibility Matrix¶
OpenText Content Server MS 2.8.0 MS 2.9.0 MS 3.0.0 MS 3.1.0 MS 3.2.0 MS 3.2.1 MS 3.3.0 MS 3.4.0

Content Suite 16.2 EP6 X X X X

Content Suite 16.2 EP7 X X X X

Content Suite 20.2 X X X X X X X X

Content Suite 20.3 X X X X X X X X

Content Suite 20.4 X X X X X X X

Content Suite 21.1 X X X X X X X

Content Suite 21.2 X X X X X X

Content Suite 21.3 X X X X X X

Content Suite 21.4 X X X X X X

Content Suite 22.1 X X X X

Content Suite 22.2 X X X

Content Suite 22.3 X X

Content Suite 22.4 X

Content Suite 23.1 X(*)

(*) Requires hotfix hotFix_ANS_340_010 to be installed

All Enhancements in version 3.4.0¶
ID Scope Description

#001588
Beautiful

Webforms

Flatpickr: add internationalization support to Flatpickr to support

for all languages

#001608
Extension -

OAuth

Added the possibility of manipulating outgoing requests in the

'getAccessToken' API.

#001605 Script Console
The Script Console no longer requires a connection to import the

OTCS configuration.

#001601
Beautiful

Webforms
Date picker: add internationalization to support all languages

#001604
Beautiful

Webforms

It is now possible to programmatically update the viewTemplate

and the Smart Editor configuration of a view

#001583 Smart Pages
It is now possible to add custom panels between the properties

of an object on Smart View

61 Version 3.4.0 (Rancate) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001566 Module Suite OData Service Improvements

#001564 Module Suite
Added Grid Widget in CSFormSnippets:V4:Sandbox and OData

Service example

Issues Resolved in version 3.4.0¶
ID Scope Description

#001532
Online

Documentation

Beautiful WebForm Update: import of libraries in volume is

mandatory

#001584
Online

Documentation

Script Console loadConfig: update the documentation page

according with new import mode

#001587
Online

Documentation

BWF updater: review the documentation according with the

new tool

#001598
Online

Documentation
Mobile WebForms: please remove the page

#001592 Content Script Revoke of EDITPERMISSIONS, remove all the other permission

#001513
Beautiful

Webforms

the change event is not being detected when using a Date

Time Picker widget with an onChange widget

#001545
Beautiful

Webforms

Multiple rows fields: it is not possible add/remote fields in the

PreSubmit script

#001428 Module Suite
After upgrading MS to version 3.2.1, secret properties/

passwords in the basic configuration are lost

#001567
Beautiful

Webforms

The title in the 'Widget Model' of the 'Box Container closed'

Form Snippet is wrong

#001381 Script Console
If a OTCS User has a "!" in its password in a position different

from the last character the Script Console login crashes

#001377
Beautiful

Webforms

Switch Widget: actions configured under Data attributes are

not triggered

#001586
Beautiful

Webforms

The API 'listFormData' performs poorly when the submission

mech is set to 'versions'.

#001569
Beautiful

Webforms

Smart DropDown: issue setting default with multiple

apostrophes characters

#001367
Beautiful

Webforms

If in a workflow, hidden checkboxes on a Beautiful Web Form

are reset.

#001385 Module Suite Missing "References" menu entry for Content Script

62 Version 3.4.0 (Rancate) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001321 Module Suite
Having many versions on a content script slows down the

retrieval of objects

#001316 Smart Pages
Smart Menu: in the top bar, there is no way to show a string.

Only icons is visible (regression from 3.0)

#001313
Beautiful

Webforms
Signature Pad not working in 3.1 Version.

#001561 Smart Pages
CSSmartMenu: if there is a multiselection, there is no way to

reset the counter of selected items

#001579
Beautiful

Webforms

Datatables Search Builder: selecting Data field causes a

JavaScript error and values are not passed to the backend

#001582 Module Suite
If a script used within a workflow has the character "_" in its

name, its execution would result in an error

#001576 Content Script
After upgrade to 3.3, some workflow using Event Script stop to

work with a generic error

#001578
Beautiful

Webforms
TKL widget: popup is not closed after selecting a value

#001573
Beautiful

Webforms

Sync Template Widget does not allow to specify an identifier

and does not work when embedded in smart page

#001572
Beautiful

Webforms

Grid widget does not generate the expected code in the

OnLoad script

#001571 Smart Pages
Sync CSS is not properly applied when form is embeded in

Smart Page

#001549 Smart Pages

Issue reinitialization Datatable in a form embedded in a

SmartPage if there are multiple tiles in a perspective that

embed forms

#001174 Smart Pages Tree widget: Context aware option seems not working

#001376 Module Suite GetNodeFast on an unexisting object raise an error

#001529
Beautiful

Webforms

The Select From ViewParams widget (V4) does not work

correctly if one of the values contains double quotes

#000912 Content Script Issue retrieving listMembers of Esign groups

#001543 Content Script Docx library generates XML files in pretty format when merging

#001557 Content Script CSWS's otcs(Verb) (e.g. otcsGet) apis do not work on 22.3

#001565 Module Suite
FormBuilder and SmartPage Builder do not display widgets'

help message in the configuration panel

63 Version 3.4.0 (Rancate) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001559 Content Script
New CSScriptSnippets are not listed in the editor unless a

search is performed.

#001556 Module Suite
Calling a CS RESTAPI where the script customizes the

contentType of the response results in a blank page.

#001563 Module Suite CSSmartMenu override not applied on 22.1

Version 3.3.0 (Montebello) - Release notes¶

Release Date End of AMP(*) End of Life

2022-11-01 2025-11-01 2026-11-01

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and

known issues related to AnswerModules Modules Suite version 3.3.0.

Module Suite Compatibility Matrix¶
OpenText Content Server MS 2.7.0 MS 2.8.0 MS 2.9.0 MS 3.0.0 MS 3.1.0 MS 3.2.0 MS 3.2.1 MS 3.3.0

Content Suite 16.2 EP6 X X X X X

Content Suite 16.2 EP7 X X X X X

Content Suite 20.2 X X X X X X X X

Content Suite 20.3 X X X X X X X

Content Suite 20.4 X X X X X X

Content Suite 21.1 X X X X X X

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best

to ensure that, where necessary, is made clear that the information presented is only applicable to specific

versions, however if you are looking for this version-specific documentation, you can find it here (http://

developer.answermodules.com/manuals/3.3.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.

However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the

accuracy of this publication.

64 Version 3.3.0 (Montebello) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/3.3.0
http://developer.answermodules.com/manuals/3.3.0
http://developer.answermodules.com/manuals/3.3.0
http://developer.answermodules.com/manuals/3.3.0

OpenText Content Server MS 2.7.0 MS 2.8.0 MS 2.9.0 MS 3.0.0 MS 3.1.0 MS 3.2.0 MS 3.2.1 MS 3.3.0

Content Suite 21.2 X X X X X

Content Suite 21.3 X X X X X

Content Suite 21.4 X X X X X

Content Suite 22.1 X X X

Content Suite 22.2 X X

Content Suite 22.3 X

All Enhancements in version 3.3.0¶
ID Scope Description

#001527 Content Script Content Script: option add version is not available

#001535 Content Script
Issue: The upgrade() method of the docman API returns

always true

#001251
Online

Documentation
Installation and upgrade page: highlight library import task

#001098 Module Suite More robust form for license key

#001512 Beautiful Webforms New features for the ADN widget

#001415 Content Script
Performance of the API isMemberOf: review and verify

possible optimization

#001501 Module Suite
Content Script Result Tile is now using velocity macro for

managing static dependencies

Issues Resolved in version 3.3.0¶
ID Scope Description

#001530
Beautiful

Webforms

Select basic: if the values contains an & character, if an action

trigger a reload, the value of that select is reset

#001424
Extension -

SQL

The runSQL method of the sql API does not work if the cast of the

input parameter is incorrect

#001375 Module Suite AMXECM initialization error reported in thread logs

#001484 Content Script
Mail fetch: unable to retrieve attachments if there is an accent in

the file name

#001493
Beautiful

Webforms

Form Builder: in version 3.2.x is not showing widget of library V2,

also if the library is present in the Volume

#001178

65 Version 3.3.0 (Montebello) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Extension -

Rendition

Rend package has not been release for windows: on S3 there is

only the linux one

#001384
Beautiful

Webforms
Masking Script Error: $ is not recognized.

#001474
Beautiful

Webforms

Smart View template: labels of fields are truncated if they are

placed on top or bottom

#001472
Beautiful

Webforms

jQuery Interdependencies: if it is set on a read only field,

JavaScript error is raised and the page get stuck in loading

#001494
Beautiful

Webforms

Custom Script Widget: function registerWidgetCallback non

executed with SmartView template

#001406 Module Suite
Issue in docman.clonePermissions(..) API - "Public Access" right is

restored on target object even if removed from source object

#001387
Beautiful

Webforms

Issue in docman.clonePermissions(..) API - "Add major version"

right is ignored

#001496 Content Script Error setting a category attribute to nodes shared with Core Share

#001468
Beautiful

Webforms
V4 Form template: am_grid.css and am_gridTable.css are missing

#001450
Beautiful

Webforms

Layout widget generates a 404 error in Console/Network tab due

am_gridTable.css missing

#001328
Beautiful

Webforms

No login redirect if an custom action button is click and session is

expired

#001500 Content Script
Content Server WebService getNode is not working and generate a

trace with Module Suite 3.2.x

#001503 Content Script LoadFormData fails if there are rows with the same

#001534 Smart Pages
Datatable widget not working in BWS widget on leading

application (xECM)

#001531 Smart Pages
Forms that have a SubView are not rendered correctly when

included in a Smart Page

#001524 Smart Pages
Regression with hotfix 020: if you open different Smart Pages, the

user always see the content of first one

#001478
Beautiful

Webforms

Handsontable widget: without setting "Grid height" property,

dropdown fields are not usable

#001318 Script Console
Script console configuration can now be imported from the

standard XML export of Module Suite Configuration

#001519 Module Suite

66 Version 3.3.0 (Montebello) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Issue with the path to anscontentscript temporary files in the

Base Configuration page.

#001364
Beautiful

Webforms

Modal container issue: after inserted into Form Builder, it is not

possible remove, clone and configure

#001399 Module Suite HTTP 401 error in a scheduled script that call a rest API

#001380 Module Suite Conflict between AM patch and CGI patch

#001314
Beautiful

Webforms

Smart DropDown: issue setting value in OnLoad if it contains not

alphanumeric characters

#001429
Beautiful

Webforms
On Content server 22.2 the 'User by login' widget does not work

#001430 Script Console Script Console package is not present in 3.2.0 installer

#001510 Module Suite
Even if enabled, the Content Script Execution Auditing is not being

tracked in the Audit table

#001518
Beautiful

Webforms

Form Builder: not all the custom widgets are showed in the widget

tree

#001517
Beautiful

Webforms

Form Builder: if a custom widget is added in a BWF, when this

form is edited, this widget is no more showed in editor

#001509 Smart Pages
Executing a search within the SmartUI OOB search feature for a

Date Range belonging to a Category returns an error

#001525 Module Suite
When a workflow is transported to another environment

references to scripts used in the workflow are lost

#001521 Module Suite Module Suite is not logging on 22.3

#001470 Module Suite
Beautiful WebForms Studio-WebForm creation from PDF forms:

Issue when selecting a pdf, javascript error stops the form creation

#001504
Beautiful

Webforms

Beautiful WebForms Studio - Approval Application: An error is

returned when override an existing application

#001505
Beautiful

Webforms

Beautiful WebForms Studio: The currency widget in the BWF is not

initialized correctly

#001523 Module Suite
Setting a list of users as a form step assignee in Process Builder

generates a corrupted workflow map.

#001522 Module Suite
An error is raised when any sql code is executed (sql service) with

parameters that are not strings

#001482
Beautiful

Webforms

Smart Dropdown and OnChange action: if the dropdow has option

"Use a single input", the onchange is not trigger after 2 items

#001307 Space Content context menu issue: not locked on the file

67 Version 3.3.0 (Montebello) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Beautiful

Webforms

#001453 Content Script
New document created from a rendition or version: the version

name is always set to csscript.txt

#001358 Content Script
When executed within a callback, renaming a Connected

Workspace does not work.

#001471
Beautiful

Webforms

Submit Button With Param doesn't send action parameters if there

is an ADN dropdown field in the form

#001427
Beautiful

Webforms
OnChange widget is not working with ADN Dropdown

#001417 Content Script Impossible to modify Content Script step in a running workflow

#001476
Beautiful

Webforms
Countries widget: using the V4 library, the flag icons are not shown

#001480
Beautiful

Webforms

Datepicker: if current date is set in default widget with variable $

{date.data} the field is empty on form load

#001479 Smart Pages
Action Button: if configured to perform the action Expand, Action

Parameters are not populated

#001330 Smart Pages Modal not opening in Smart Page

#001511 Module Suite
Content Script Volume Library Import Tool Might fail on Unix

based systems

#001490 Smart Pages
Action button: The class of a button within a 'Button Container' is

not set correctly

#001473 Content Script
Content Script Volume Import Tool page: error opening it if there

isn't en_US in the Multilingual Metadata in Content Server

#001485
Beautiful

Webforms
Smart DropDown DB Lookup: Callback feature is not working

#001454 Content Script
Synchronous callbacks NodeCopy and NodeMove are not

interrupted throwing InterruptCallbackException

#001491 Module Suite Content Script objects indexing does not work

#001419 Module Suite
Enabling Synchronous callbacks causes an error when creating

new items

#001456 Content Script
Custom properties in base configuration: it is not possible to

remove custom properties if they are marked as encrypted

#001455 Content Script
Custom properties in base configuration: it is possible to add the

same property multiple times but with different values

68 Version 3.3.0 (Montebello) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001351
Extension -

Forms
i18n in Remote Web Form

#001434
Beautiful

Webforms

Smart View Task template: if a pdf has an empty comment, it is

showed with string "null" in comments tab

#001451 Content Script
In some cases, objects created via synchronous callback do not

inherit permissions

#001486 Module Suite Enterprise Connect stops to work after Module Suite 3.2.x upgrade

#001459 Module Suite
Issue with standard Content Server search in Smart UI using dates

as filter, when MS is installed

#001487 Content Script Velocity template error: Unable to create rendable form

#001422 Content Script zip API: setPassword method is not working

#001378 Content Script Error passing params to a Content Script through a WebReport step

Version 3.2.1 (Morcote) - Release notes¶

Release Date End of AMP(*) End of Life

2022-07-19 2025-07-19 2026-07-19

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and

known issues related to AnswerModules Modules Suite version 3.2.1.

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best

to ensure that, where necessary, is made clear that the information presented is only applicable to specific

versions, however if you are looking for this version-specific documentation, you can find it here (http://

developer.answermodules.com/manuals/3.2.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.

However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the

accuracy of this publication.

69 Version 3.2.1 (Morcote) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/3.2.0
http://developer.answermodules.com/manuals/3.2.0
http://developer.answermodules.com/manuals/3.2.0
http://developer.answermodules.com/manuals/3.2.0

Module Suite Compatibility Matrix¶
OpenText Content Server MS 2.6.0 MS 2.7.0 MS 2.8.0 MS 2.9.0 MS 3.0.0 MS 3.1.0 MS 3.2.0 MS 3.2.1

Content Suite 16.2 EP6 X X X X X

Content Suite 16.2 EP7 X X X X X X

Content Suite 20.2 X X X X X X X

Content Suite 20.3 X X X X X X

Content Suite 20.4 X X X X X

Content Suite 21.1 X X X X X

Content Suite 21.2 X X X X

Content Suite 21.3 X X X X

Content Suite 21.4 X X X X

Content Suite 22.1 X X

Content Suite 22.2 X

All Enhancements in version 3.2.1¶
ID Scope Description

#001448
Extension -

xECM

New API to get the Workspace directly from a Business Workspace

node

#001443
Content

Script

Introduced Module Suite health check page among administrator

settings

#001439
Content

Script

Introduced verification of scripting engine activation status at

startup. Initialization scripts are not executed on an inactive

#001438 Module Suite
mproved initialization for the Module Suite template engine.

Initialization of singleton objects has been synchronized.

#001436
Content

Script
New API for accessing the volume of "Document templates"

#001394 Module Suite
Page Manage Callbacks: error raised if search is performed without

select an object

Issues Resolved in version 3.2.1¶
ID Scope Description

#001389 Module Suite
Unable to set default value for Smart DropDown DB Lookup if

value contains not alphanumeric chars

70 Version 3.2.1 (Morcote) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001449 Smart Pages SmartPages are not cached correctly by the templating engine

#001423
Beautiful

Webforms
Form Template View "OpenText" Do not show header icon

#001447
Extension -

xECM

You can now create a Business workspace in any space if the

Business workspace type is configured this way.

#001446
Extension -

PDF

Fixed the API for applying a watermark to a PDF (rotation is now in

degrees)

#001444 Module Suite
The volume import tool does not detect differences between

imported and incoming objects if they have the same version.

#001442 Content Script
Since 22.2, the presence of a % in a runSql* API parameter

generates an error

#001440 Content Script
Resolved problems with layered configuration not honored by

standard administration settings import.

#001437 Content Script
Improved caching policies for APIs that grant direct access to

"Volume" type nodes, e.g., category volume.

#001435
Beautiful

Webforms

Classification (199) and Classification Tree (196) type objects are

displayed with an incorrect icon in the NodeTable widget.

#001349
Extension -

Forms
Remote Form content: not drop area with IE

#001395 Module Suite Page managelog.cs: wrong label and script name truncated

#001397 Module Suite
Manage Callbacks search page: it is not possible select business

workspace

#001392 Module Suite
Unable to use the page Manage Callbacks search form if Enable

check Next URL is enabled

#001382 Module Suite
If the file name provided in the creation dialog ends with ".cs,"

OTCS may generate an error.

#001298 Smart Pages Possible issue with flyout option in Smart UI Menu

#001393 Module Suite Unable to use the page Manage Callbacks for Oracle DB

#001416 Smart Pages
Custom Columns in SmartView: performance issue when applied

on Virtual Folder

#001412 Module Suite
Form Builder lists widgets that cannot be displayed, if widgets

from the current library have not been imported into CSVolume

#001410 Module Suite
The "Missing Widget" placeholder is not rendered correctly in

Form Builder

71 Version 3.2.1 (Morcote) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001409 Module Suite
Form Builder does not correctly create the default view if the

current library widgets have not been imported into the CSVolume

Version 3.2.0 (Locarno) - Release notes¶

Release Date End of AMP(*) End of Life

2022-04-15 2025-04-15 2026-04-15

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and

known issues related to AnswerModules Modules Suite version 3.2.0.

Module Suite Compatibility Matrix¶
OpenText Content Server MS 2.5.0 MS 2.6.0 MS 2.7.0 MS 2.8.0 MS 2.9.0 MS 3.0.0 MS 3.1.0 MS 3.2.0

Content Suite 16.2 EP6 X X X X X X

Content Suite 16.2 EP7 X X X X X X

Content Suite 20.2 X X X X X X

Content Suite 20.3 X X X X X

Content Suite 20.4 X X X X

Content Suite 21.1 X X X X

Content Suite 21.2 X X X

Content Suite 21.3 X X X

Content Suite 21.4 X X X

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best

to ensure that, where necessary, is made clear that the information presented is only applicable to specific

versions, however if you are looking for this version-specific documentation, you can find it here (http://

developer.answermodules.com/manuals/3.2.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.

However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the

accuracy of this publication.

72 Version 3.2.0 (Locarno) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/3.2.0
http://developer.answermodules.com/manuals/3.2.0
http://developer.answermodules.com/manuals/3.2.0
http://developer.answermodules.com/manuals/3.2.0

OpenText Content Server MS 2.5.0 MS 2.6.0 MS 2.7.0 MS 2.8.0 MS 2.9.0 MS 3.0.0 MS 3.1.0 MS 3.2.0

Content Suite 22.1 X

Major Changes in version 3.2.0¶

Content Script Volume management¶

Prior to Module Suite version 3.2, all Content Script Volume resources had to be necessarily

imported in the Volume, with no exceptions. Starting with version 3.2, Module Suite is capable

of using certain resources (CSFormSnippets, CSScriptSnippets, CSPageSnippets) directly from

the Module installation folders on the filesystem, without the strict need to "materialize" them

in the Content Script Volume. This approach allows to avoid the overhead of importing certain

resources if the administrator does not plan to customize them, but it optionally allows to

"materialize" them in the Volume if needed.

This new approach allows to significantly reduce the effort required in validating the content of

the Content Script Volume and solving conflicts in case of updates, since if the resources have

not been materialized, the update will be transparent for the users (the library in the new

Module version will replace the old one).

As a result of this new approach, the CSVolume administration tools have been reorganized

and updated.

See the Content Script Volume Import Tool guide for additional details.

Issues Resolved in version 3.2.0¶
ID Scope Description

001314
Beautiful

Webforms
Issue on Smart DropDown - special characters in option values

001359
Beautiful

Webforms

When removing a Box Container widget from the form builder, the

next widget is deleted too

001362
Beautiful

Webforms
Cloned widgets are removed from the view upon saving

001339
Beautiful

Webforms

Error in PDF viewer rendition if file name contains special

characters

001338
Beautiful

Webforms

Unable to configure Smart DropDown DB Lookup - field values

cannot be selected

001337
Beautiful

Webforms
Datatable: inline menu buttons are not visible

73 Version 3.2.0 (Locarno) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

../../administration/csvolume_import_tool/

ID Scope Description

001335
Beautiful

Webforms

Iteration container widget is removed from view upon saving and

reopening the Form Builder

001279
Beautiful

Webforms

Form Builder Toolbar gets cut after moving widget at the bottom

of the grid

001315
Beautiful

Webforms
Mapping Script widget not working (BWF library V4)

001352
Beautiful

Webforms

The 'Wysiwyg Editor' widget (BWF library V4) is not displayed

correctly in ReadOnly mode

001309
Beautiful

Webforms

After update to MS 3.1, Form Builder drops closing element of

Container widgets

001312
Beautiful

Webforms

After update to MS 3.1, unable to edit BWF view built with BWF

library V3

001310 Content Script
The 'isChain' parameter is ignored when programmatically

scheduling the execution of Content Scripts

001361 Content Script
A node's nickname value is not loaded correctly if the node

information is loaded using a lazy-access API

001305 Content Script Traces are generated when using csws API to call webservices

001296
Extension -

Docx

Obsolete log4j file subject to vulnerability is included in 'docx'

service library

001297 Content Script
Content Script 'template' service fails to initialize after upgrade to

Module Suite 3.1

001308
Extension -

Docx

createSpreadsheet() API method of the xlsx service throws

exception

001326
Extension -

Forms

Beautiful WebForms Studio: wizard for Remote Form export stops

at 'Working area' step

001332 Module Suite
CORS related issues for pages and forms when embedded in

leading application

001129 Smart Pages
Pagination issues in Node Table widget - navigation reset to page

1 whenperforming back action

001327 Smart Pages Fragment does not work

001336 Script Console Obsolete log4j file subject to vulnerability is included in library

74 Version 3.2.0 (Locarno) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

Version 3.1.0 (Ascona) - Release notes¶

Release Date End of AMP(*) End of Life

2022-01-15 2025-01-15 2026-01-15

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and

known issues related to AnswerModules Modules Suite version 3.0.0.

Module Suite Compatibility Matrix¶
OpenText Content Server MS 3.1.0

Content Suite 16.2 EP6 X

Content Suite 16.2 EP7 X

Content Suite 20.2 X

Content Suite 20.3 X

Content Suite 20.4 X

Content Suite 21.1 X

Content Suite 21.2 X

Content Suite 21.3 X

Content Suite 21.4 X

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best

to ensure that, where necessary, is made clear that the information presented is only applicable to specific

versions, however if you are looking for this version-specific documentation, you can find it here (http://

developer.answermodules.com/manuals/3.1.0)

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.

However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the

accuracy of this publication.

75 Version 3.1.0 (Ascona) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/3.1.0
http://developer.answermodules.com/manuals/3.1.0
http://developer.answermodules.com/manuals/3.1.0
http://developer.answermodules.com/manuals/3.1.0

Major Changes in version 3.1.0¶

All Enhancements in version 3.1.0¶
ID Scope Description

#001140
Beautiful

Webforms
Disable ADN on page reload

#001191 Content Script
When saving a script from the Content Script Editor also the

Content Suite Static Variables should be saved.

#001170 Content Script Library update procedure: folders are often skipped

#000961 Smart Pages Missing methods to update Physical Object

#000960 Smart Pages Ordering in custom commands

#001256
Beautiful

Webforms
"PDF Viewer: when a document is downloaded

#001179 Smart Pages Smart UI Accessibility Issues for people with disabilities

#001155
Beautiful

Webforms

Smart View Task view template now supports adding documents

and shortcuts to WF's attachments from OTCS.

#001054 Content Script Rename a folder with internationalization activated

#001167 Content Script New API service for updating the table of a form template

#000947 Module Suite Re-import of a Content Script is not supported

#001183 Module Suite Activation Key information is no longer persisted on INI file

Issues Resolved in version 3.1.0¶
ID Scope Description

#001160
Online

Documentation
Possible confusion in the release note page

#001224
Online

Documentation

Content Script Node Table Tile: the code used as example is

wrong

#001113
Online

Documentation
Add to documentation property to fix the address

#001169
Online

Documentation
Installation on multiple server

#001242
Online

Documentation
Remove Web Form: copy al support folders

76 Version 3.1.0 (Ascona) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001253
Online

Documentation

Crete a page or a specific paragraph for custom template and

snippets

#001201 Content Script Sharing issue with Coreshare

#001270 Content Script
Issue of the getClassificationNode() method of the recman

service

#001214
Beautiful

Webforms
Footer section missing in Modal Container widget

#001261
Beautiful

Webforms
Image widget issue

#001269
Beautiful

Webforms
"Flatpickr in Smart View: if it is present in one page

#001286
Beautiful

Webforms
Base configuration show password in additional properties

#001283
Beautiful

Webforms

V5: Form is not rendered when there's a Text Popup Form

Template field in the model

#001284
Beautiful

Webforms
Fix validators for V5 library

#001276 Content Script Helper: the documentation for the docman API is missing

#001275
Beautiful

Webforms
The View Smart Task Button widget is not visible

#001278
Beautiful

Webforms

V5 library: when using Smart View Task template the submit of

the form retruns an error

#001287
Beautiful

Webforms
Add property to manage TLS version for mail service

#001285
Beautiful

Webforms
Random validation error with the Phone widget

#001249
Beautiful

Webforms

Graphic issue on the configuration of the 'Buttons Group'

widget

#001246
Beautiful

Webforms

Minor usability issue: alignment difference of a label between

editor and form

#001250
Beautiful

Webforms
Graphic issue on the configuration of the 'Table' widget

#001248 Smart Pages
It is not possible to set the visibility of the 'Box Container'

widget

#001244 Extension - Forms

77 Version 3.1.0 (Ascona) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Missing a default out of the box template for Remote Web

Form

#001240 Extension - Forms Issue on method updateTable

#001238
Beautiful

Webforms
JavaScript Error adding debug box widget

#001229
Beautiful

Webforms
Usability issue:18n checkbox available where it should not

#001225 Smart Pages "For Content Script under CSSmartView:Commands folder

#001220
Beautiful

Webforms
'Bold Label' checkbox missing in the 'Space content' widget

#001219
Beautiful

Webforms
Missing icons in button widgets

#001210 Module Suite CSSmartView Column: adding back compatibility with 2.9

#001196
Beautiful

Webforms
V3 Buttons Group Visibility Rules

#001204 Content Script
Menu lazy doesn't work in the 'Content Script Nodes Table' of

the perspective

#001193
Beautiful

Webforms

Currency field: strange behavior if comma is set as decimal

separator

#001176
Beautiful

Webforms
Online editor has a wrong link

#001061 Content Script Catch Exceptions thrown from different script

#001110
Beautiful

Webforms

BWF endpoint is unable to deserialize form object if

form.viewParams contains classes that have been defined

within a Script

#001138 Extension - xECM Helper: the documentation for the XECM API is missing

#001064
Beautiful

Webforms
Add internationalization support to Datepicker

#001066
Beautiful

Webforms
Missing file size in Space Content after upload

#001118 Smart Pages
"CSSMARTMENU : custom menu items missing in search results

view with Tabular search view"""

#00959 Content Script CSTaskImpl.assignedTo doesn't work

#001226 Content Script Random error Unable to find resource '/AMST-1027490201'

78 Version 3.1.0 (Ascona) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001230
Beautiful

Webforms

It is no longer possible to add a field to a set using the

FormBuilder

#001158 Content Script Little change in editor after upgrade

#001101 Smart Pages
"Datatable widget doesn't support client side actions (like

pagination

#001055 Content Script Minor error with online helper

#001050
Beautiful

Webforms
Issue mapping name of column on Table widget

#001049
Beautiful

Webforms
Issue Users in Group widget

#001048
Beautiful

Webforms
Issue on Dropdown and Service on Handsontable widget

#001047 Module Suite
In the Task object it's possible to create a Module Suite

Template

#001036
Beautiful

Webforms
Two Progress Bar form snippets

#001035 Content Script Incorrect Widgets CSSynchEvent

#001032
Beautiful

Webforms

Issue Clear button on Smart DropDown widget in read only

mode

#001026
Beautiful

Webforms
Some incorrect SmartUI Widgets (v3)

#00941
Beautiful

Webforms
Smart DropDown and select has a very little style glitch

#001012
Beautiful

Webforms
"In Beautiful WebForm

#001011 Smart Pages "In Smart Pages

#00966
Beautiful

Webforms

Adding a row on Smart DropDown using the template

SmartView on Firefox doesn't work

#00378 Extension - Docx "In certain cases

#001175 Content Script CSWS and pool widget not working with 21.3

#001273
Beautiful

Webforms

V5 library: an easy from with only Space Content is not

rendered due JS error

#001185
Beautiful

Webforms
Issues editing views that have been transported

79 Version 3.1.0 (Ascona) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001129 Smart Pages
Page in Smart View with node table always back on page 1 in

case of multiple page

#001265
Beautiful

Webforms

"Scheduling option reset to default from the ""Specific""

context menu"

#001215 Smart Pages CSSmartView:Columns not displayed on Results page

#001243
Beautiful

Webforms
Usability issue in Select Basic (see screenshot)

#001222
Beautiful

Webforms
Label issue of the Radio Basic widget

#001203
Beautiful

Webforms
Comments missing in the SmartView Task template

#001281 Extension - sFTP Private key is visible in the log

#001266
Beautiful

Webforms
Default value for Flatpk and date picker is not working

#001264
Beautiful

Webforms
Usability issue in Panel Layout

#001259
Beautiful

Webforms

"Panel Layout: problem in the form builder if ""is collabsible""

is checked"

#001231
Beautiful

Webforms

Forms having revision mech specified are not properly

persisted when retrieved using forms.getFormInfo

#001211
Beautiful

Webforms

Graphic issue of the loading indicator of the Space Content

widget

#001180 Content Script
duplicate row creation when initiating a workflow form

content script

#001272 Module Suite Issue on the perspectives that include a Smart Page

#001280 Module Suite
Critical security vulnerability related to log4j CVE-2021-44228 /

CVE-2021-45046

#001044 Module Suite
Regression 1013: Base configuration custom props are not

initialized

#001233
Beautiful

Webforms
Add internationalization support to Flatpickr

#001202
Beautiful

Webforms

Edit button missing in the attachments of the SmartView Task

template

#001217 Smart Pages "scope : ""single"" in a Smart Menu is ignored"

80 Version 3.1.0 (Ascona) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

#001223 Smart Pages
Tile Content Script Nodes Table: wrong code inserted by

snipped

#001227
Beautiful

Webforms
User by login: translation is not working

#001228
Beautiful

Webforms
"SmartDrop down: if no result in filter

#001236 Smart Pages Content Script Result: css issue

#001199
Beautiful

Webforms
i18n in select basic is not working

#001213 Extension - Forms Error in process of export of a Remote Form

#001209 Module Suite
"Issue creating pdf of a form generated by ""Beautiful

WebForm Studio"""

#001151 Smart Pages "Datatable: if it is enabled the drop area

#001173 Script Console Error 500 adding a new script with same name

#001189 Smart Pages
Smart Page actions are cumulated when using navigation

between Smart View Perspectives

#00680 Content Script
Accessing rendition content on CSVersion result in wrong

content

#001271
Beautiful

Webforms
Communication between smart pages

#001200 Extension - Docx Issue with html field into docx document

#001234 Content Script
Under particular circumnstances a script executed by DA might

lead to a system freeze till the operation is completed

#001188 Content Script "Issue on ""Always run impersonating"" user"

#001190 Smart Pages
Panel layout Widget in SmartPages Page Builder is missing

configuration text boxes

#001182
Beautiful

Webforms

Issue when importing the template view through the Transport

Warehouse

#001192 Module Suite

When filtering widgets or snippets in IDE if user clciks on

Submit/Enter the page refreshes and shows Enterprise

Workspce

#001184
Beautiful

Webforms
"When a version of a view is deleted

#001241 Custom HTML form template not visible in the Form Builder

81 Version 3.1.0 (Ascona) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Beautiful

Webforms

#001187 Content Script
When typing in the Content Script Static Variable Tabs window

flickers

#001186 Content Script Minor issue of Run SQL and Run SQLFast widgets

#001177 Smart Pages Smart UI widget title

#00884
Beautiful

Webforms
Issue Wysing Editor the copied image is duplicated

#001136
Beautiful

Webforms

Space content spin load: graphical issue in Smart View and

Smart view task

#001168
Beautiful

Webforms
Change behavior in the hidden text field

#001127
Beautiful

Webforms
Currency field doesn't trigger OnChange

#001027 Script Console Little error in installer for 2.8.0

#001161
Beautiful

Webforms
Change in multi-field behavior: clear is not working

#001162 Content Script Smart Menu doesn't work after upgrade to 3.0.0

#00838 Content Script Workflow Suspended leads to a blank Content Script Step

#001159 Smart Pages Tile Content Script node table result is not working in 3.0.0

#001156
Beautiful

Webforms
"Space content: uploading a file

#001150
Beautiful

Webforms
On Event Validation widget: it is not possible select the field

#001153
Beautiful

Webforms

Include SmartUI Widget Widget fails because region's 'el' is not

already loaded in page

#001154 Smart Pages Include SmartUI Widget fails on 16.2.8

#001152
Beautiful

Webforms
ADN ID widget is missing Content Script Snippet

#001141 Extension - ZIP "Regression on ZipContext

#001145 Smart Pages "SmartPage: if a template is selected for the smart page

#001149
Beautiful

Webforms
"Date fields

#001146 Smart DropDown DB Lookup is not working in 3.0.0

82 Version 3.1.0 (Ascona) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Beautiful

Webforms

#001144 Smart Pages
Error in contentScript script: it is failing the version check for

16.2.8

#001147
Beautiful

Webforms
No page reload/action triggered if there is a subview

#001142
Beautiful

Webforms
Show-if conditions not properly evaluated within Sets on V5

#001094
Beautiful

Webforms
Default in Modal Container

#001102 Smart Pages Issue title of the confirmation dialog of DataTable widget

#001143
Beautiful

Webforms

Downloading the Excel Template from BWF Form Studio results

in a corrupted file

#001148
Beautiful

Webforms

"Adding a row to a set in a form where data was already

submitted

Version 3.0.0 (Generoso) - Release notes¶

Release Date End of AMP(*) End of Life

2021-06-30 2024-06-30 2025-06-39

(*) Active Maintenance Period

The present document contains information regarding product enhancements, fixed issues and

known issues related to AnswerModules Modules Suite version 3.0.0.

This guide

The information presented in the on-line guide are mostly non-version specific. AnswerModules team does its best

to ensure that, where necessary, is made clear that the information presented is only applicable to specific

versions, however if you are looking for this version-specific documentation, you can find it here (http://

developer.answermodules.com/manuals/3.0.0)

Script Console Installer

The Script Console installer has been temporarily removed from the Module Suite master installer. It will be

reinstated in the next minor release.

No Warranties and Limitation of Liability

83 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/3.0.0
http://developer.answermodules.com/manuals/3.0.0
http://developer.answermodules.com/manuals/3.0.0
http://developer.answermodules.com/manuals/3.0.0

Module Suite Compatibility Matrix¶
OpenText Content Server MS 3.0.0

Content Suite 16.2 EP6 X

Content Suite 16.2 EP7 X

Content Suite 20.2 X

Content Suite 20.3 X

Content Suite 20.4 X

Content Suite 21.1 X

Content Suite 21.2 X

Content Suite 21.3 X

Content Suite 21.4 X

Major Changes in version 3.0.0¶

IDEs¶

All the Module Suite's IDEs have been deeply revised. Among the new functionalities

introduced: filtering for snippets and widgets, editor theme selector, log level rapid switch for

Content Script Editor, remote repositories for Content Script snippets, Content Script Co-edit

(Beta)

Beautiful WebFormsContent Script EditorPage Builder

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication.

However, AnswerModules accepts no responsibility and offer no warranty whether expressed or implied, for the

accuracy of this publication.

84 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

85 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

Filtering¶

A new filtering feature has been added to all IDEs to make it easier to select the appropriate

widget or snippet in large libraries.

86 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

Remote snippets repositories¶

You can now retrieve Content Script snippets from remote repositories. This allows you to

maintain an enterprise KB related to Content Script (in the form of a local Snippets repository

or leverage Snippet repositories offered by third-party vendors. To register a new repository

you need to add a custom option in Base Configuration having the form: amcs.msrepo[n].url

=Label|repoUrl where n is a number between 0 and 10.

Concurrent Script Editing¶

Module Suite 3.0 features an experimental functionality that allows several developers to

simultaneously collaborate on the editing of the same script. The functionality leverages

WebRTC to establish a peer-to-peer direct connection among developers. The developer's

browser will connect to the specified signaling server to find other peers. A password can be

specified to encrypt all communication on the signaling server even if no sensitive information

(WebRTC connection information, shared data) is shared over the signaling server.

Content Script¶

Updated of all major dependencies to their latest releases. New APIs for creating and

manipulating OTEmail objects and OT Pulse comments. Improvements to performances related

to the retrieval of information from the database.

Administration¶

New performances tuning options available in the Module Suite base configuration.

Beautiful WebForms¶

New V5 library¶

Module Suite 3.0 introduces a new widget libary based on reactive components (Vue.js (https://

vuejs.org/)). With this library, the already powerful engine, used to perform server-side

rendering of forms' views is complemented by a reactive framework operating directly in the

user's browser. When a form's view is composed using this library, the data model that is

normally used in server-side rendering (form) is also serialized into a JSON object on the user's

browser. This client side "model" feeds a reactive application developed with Vue.js (https://

vuejs.org/). Thanks to this new approach we open up the possibility of performing numerous

manipulations of the data model directly on the user's client.(i.e. it is no longer necessary to

amcs.msrepo0.url=Sandbox|https://developer.answermodules.com/resources/repos/sandbox

87 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/

perform a client-server round-trip to manipulate the data-model), which do not longer require

to update (totally or partially) the page containing the view. To support and facilitate the

manipulation of the data model on the user's browser, the concept of action, already in use for

server-side manipulation of the data model, has been extended and revised. When an action is

now triggered the frameworks looks for its implementation first in a client-side registry, and

only if it is not found proceeds invoking the server-side business logic (CLEH). The

implementation of a client-side action is pretty simple and can leverage a dedicated javascript

API, whose main methods are:

New widgets for library V4¶

Added new widgets in library V4

Smart Pages¶

Commands definition cache¶

It is now possible to cache (using the distributed memcache) the result of the execution of the

scripts stored under "CSSmartView:Commands" used to load the definitions of the additional

commands you want to be available in Smart View pages. The scripts outcome is cached on a

per-user basis. To enable the caching set to true the "amcs.amsui.volumeCache" parameter in

Base Configuration. To programmatically clean the cache use the amsui.clearCache() API.

form //represents the form object (as in CLEH scripts)
form.validate() //Triggers form validation
form.getFieldReference(index, fieldName) //Access the input widget associate to a specific form's field.

//fieldName is the field's path in the form (e.g. MySet:MyField)
//index represent the set row

form.viewParams // The viewParams variable as in CLEH scripts
// e.g. form.viewParam.vmVar

form.submitForm(withValidation) //Submits the form eventually triggering the form's validation first
form.getFieldValues(fieldName) //Retrives the list of values for the given form's field
form.getViewParamsValue(viewParamName) //Retrieves the value associated to the given viewParams's variable

//The main difference between form.viewParams.myVar and form.getViewParamsValue('myVar')
//is that if myVar contains an object having the following structure:
// {ajax:{url:"https://some.service.com/endpoint", data:[]}}
//the API form.getViewParamsValue('myVar') automatically fetches the information from the
//remote service and caches the result in the objects 'data' propoerty which is ultemitely returned

form.setViewParamsValue(variable, value) //Set the value of a viewParams variable
form.setFieldValues(fieldName, values) //Set the values for the given field
form.setFieldReadOnly(fieldName, values) //Set the field as read-only or editable
form.addField(fieldName, index) //Adds an instance to the specified field
form.removeField(fieldName, index) //Remove an instance to the specified field
form.addConstraint(fieldName,contraint, configuration) //Adds the specified validation constraint to the given field
form.removeConstraint(fieldName, contraint) //Removes the specified validation constraint to the given field

CLEH scripts

If an action is triggered but it can not be found among the registered client side actions, we assume it is a server

side action and the CLEH script is executed allowing server side manipulation of the data-model

88 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

Actions definition cache¶

It is now possible to cache (using the distributed memcache) the list of scripts under

"CSSmartView:Actions" used for lazy loading additional commands in the Smart View pages. The

scripts list is cached on a per-user basis. To enable the caching set to true the

"amcs.amsui.volumeCache" parameter in Base Configuration. To programmatically clean the

cache use the amsui.clearCache() API.

Overrides optimization¶

The internal mechanisms related to how the customizations are applied to the menus and the

columns of the browsing pages of the Smart View interface have been deeply revised. The

content of the Overrides folder is now used to compute an Override Map (OM), specific to your

repository, having the following structure:

where:

(1) identifies a list of scripts to be always executed

(2) a list of scripts to be executed only if the current space has at least one node having

of the identified type (3)

(4) scripts to be considered only if the current space is descendant of the specified

tenant (5) (a space identified by its DataID)

(5) is a "tenant" configuration

(6) identifies a list of scripts that must always be executed if the current space is

descendant of the specified tenant (5)

OM = [
"globals": [(1)

540588
],
"type": [(2)

"144": [(3)
548066

]
],
"tenants": [(4)

"497147": [(5)
"globals": [(6)

548169
],
"type": [(7)

"144": [(8)
496932

]
],
"ids": [(9)

"496931": [(10)
545972

]
]

]
]

]

•

•

•

•

•

89 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

(7) a list of scripts to be executed only if the current space has at least one node having

of the identified type (8) and is descendant of the specified tenant (5)

(9) a list of scripts to be executed only if the current space has at least one node having

of the identified id (10) and is descendant of the specified tenant (5)

scripts in the OM are executed in the following order (1), (2), (6), (7), (10).

Given the above example and imagining that all the scripts in (3) (8) and (10) return the list

["comm_one","comm_two"], the resulting AOM will contain:

where YYYY is a valid node's ID.

OM is to be considered a "static" information in productive environments and as such, to

guarantee optimal performances, the framework should be allowed to cached it by setting to

"true" the " amcs.amsui.volumeCache" parameter int the base configuration.

When a user changes the current space, the OM is evaluated by the framework against the

users' permissions and the actual override map (AOM) associated to the space is determined.

AOM is determined by executing the relevant scripts in OM in the order described above. The

AOM has the following form:

•

•

•

(3) AOM = [
...
"S144":[commands:["comm_one","comm_two"]],
...

]
(8) AOM = [

...
"S144":[commands:["comm_one","comm_two"]],
...

]
(10) AOM = [

...
"D496931":[commands:["comm_one","comm_two"]],
...

]
- scripts in (1), (6), (10) MUST return a Map having entries of the form:

"SXXXX":[
commands:["comm_one", "comm_two",...],
columns: [//Optional

col_name:"col value", //value can be HTML
...
]

]
where XXXX is a valid SubType
or
"DYYYY":[

commands:["comm_one", "comm_two",...],
columns: [//Optional

col_name:"col value", //value can be HTML
...
]

]

AOM = [
"S144":[(1)

commands:["comm_one", "comm_two",...], //list of commands' command_key (2)
columns: [(3)

90 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

where: (1) represents commands and columns to be associated to all the nodes having the

identified subtype, (3) can be omitted, (4) represents commands and columns to be associated

a specific node (identified by its id), (4) takes precedence over (1).

How OM is created ?¶

In order to determine the OM, the content of the "Overrides" folder is evaluated following the

logic below:

(1) Contains the list of scripts objects stored directly under "Overrides"

(2) For each direct subfolder of "Overrides" that has a name starting by the letter "S" an

entry is created in "type" map (2). The key of such entry is the target subtype (as

specified in the subfolder's name) while the value is the list of scripts contained the

aforementioned subfolder.

col_name:"col value", //value can be HTML
...

]
],

"D1234":[(4)
commands:["comm_one", "comm_two",...], //list of commands' command_key
columns: [

col_name:"col value", //value can be HTML
...

]
]

...
]

[
"globals":[(1)

540588
],
"type": [(2)

"144": [(3)
548066

]
],
"tenants": [(4)

"497147": [(5)
"globals": [(6)

548169
],
"type": [(7)

"144": [(8)
496932

]
},
"ids": [(9)

"496931": [(10)
545972

]
]

]
]

]

•

•

91 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

(4) For each direct subfolder of "Overrides" that has a name starting by the letter "D" an

entry is created in "tenants" map (2). The key of such entry is the tenant's DataID (as

specified in the subfolder's name) while the value is the tenant OM configuration.

(5) For each "tenant" subfolder a sub-Override Map is created (SOM). The structure of

SOM is identical to the one of OM with the only difference that subfolders of a tenant

subfolder having a name starting with the letter "D" are used in SOM for creating entries

in the "ids" map.

Below an exemplar content of the Overrides folder

Name ID SubType

Overrides 00001 AnsTemplateFolder

- GlobaScript 00002 Content Script

- S144 00003 Content AnsTemplateFolder

- - Document Script 00004 Content Script

- D1234 00005 AnsTemplateFolder

- - S0 00006 AnsTemplateFolder

- - - Folder Script 00007 Content Script

- - D5678 00008 AnsTemplateFolder

- - - Node Script 00009 Content Script

and the resulting OM

•

•

[
"globals":[

00002
],
"type": [

"144": [
00004

]
],
"tenants": [

"1234": [
"globals": [],
"type": [

"0": [
00007

]
},
"ids": [

"5678": [
00009

]
]

]
}

]

92 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

All Enhancements in version 3.0.0¶
ID Scope Description

#001130 Smart Pages
Add redirect and Smart View navigation capabilities to Smart

Pages Controller script

#001119 Smart Pages Added Iterator widget to Smart Page

#001120 Smart Pages Added Include SmartPage widget to Smart Page

#001122
Beautiful

Webforms
Two new uses cases for ADN

#001015 Module Suite Content Script Performances improvements

#001097
Beautiful

Webforms

Graphical request: item reference popup style with Smart View

template

#001052 Smart Pages
Unable to access Content Script and some components with X-

Content-Type-Options HTTP Header

#000990
Beautiful

Webforms

Add 'Advanced customizations' configuration tab to the 'Custom

Action Button' widget

#000672 Content Script Getting nodes when a parent is a associated volume

#000993
Extension -

Docx
Improved support for OpenDope custom XML Parts

#000624 Content Script Being able of creating EMAIL object (subtype 733)

#000714 Content Script Content-Disposition handler in Content Script

#000700
Beautiful

Webforms
Retrieve Pulse comments

Issues Resolved in version 3.0.0¶
ID Scope Description

#001090
Online

Documentation
Review a little detail in Workflow routing page

#001060 Content Script
Problem with AmWorkID and AMSubWorkID with form is

status of a workflow

#001103 Smart Pages
Issue on the buttons of the Buttons Group widget (Smart

Page)

#001104
Beautiful

Webforms
Issue on the buttons of the Buttons Group widget

#001080

93 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Online

Documentation

Rend page: missing property and problem with Linux

instruction (or in the package)

#001037 Content Script
Content Script: managecallbackso.cs is used and fails on an

environment based on PostgreSQL DB

#001108
Online

Documentation
Docx issue with Office 365 document

#001053 Content Script managecallbacksm.cs script fail on a case sensive DB

#000891
Beautiful

Webforms

Inconsistent behavior for check-boxes when used with Widget

Space Content

#001040
Beautiful

Webforms

Regression 029: form server side object is not correctly

initialized if some field has default value

#000994
Beautiful

Webforms
ADN DropDown widget is not working

#001016
Beautiful

Webforms

No error message when validation is in OnLoad or on

PreSubmit

#000642
Beautiful

Webforms

Unable to access API documentation for Remote WebForms

feature form.amRemotePack

#001041 Content Script
Regression 029: nodes loaded through getChildren(Fast) APIs

are not properly initialized when versionables

#000944 Content Script
Document generated with a merge is corrupted if there are

comments in the documents

#001034 Smart Pages
Form with Wysiwyg widget on Smartpages: dropdown menu

and pop up for insert object are not showed properly

#001030 Smart Pages
Two small anomalies with Content Scripts in Smart UI: error

in move operation and no way to see permissions

#001025 Content Script Error checking attributes starting from a shortcut

#000985
Beautiful

Webforms

Space Content: the uploaded document has random string in

name

#001065
Beautiful

Webforms
Radio selection reset after document upload

#001043 Content Script Regression on patch 029: JDBC API is not working

#001094
Beautiful

Webforms
Default in Modal Container

#001109 Smart Pages

94 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

CSSmartUIService is unable to deserialize page model if

model.data contains classes that have been defined within a

Script

#001056 Content Script Regression on patch 029: timeout putting a value in cache

#000644
Beautiful

Webforms
It is not possible to save an empty content script

#001028 Extension - xECM Missing 'Inline Guide' for xecm extension

#001029 Extension - xECM
Wrong parameters type of editor autocomplete of the

'AddRole' method of the 'xecm' extension

#000939 Smart Pages
Erroneous behavior when selecting rows in Smart Pages

Datatable widget

#000521
Beautiful

Webforms

Source Code editor within Form Builder is initialized with

wrong code when a new empty BWF view is created

#000998
Beautiful

Webforms
Minor error in panel container

#001095
Beautiful

Webforms
Scroll relocator: if added to a page there is a JS error

#001121
Beautiful

Webforms
Error getting menu from a document

#000905
Beautiful

Webforms

Datatable widget doesn't support client side actions (like

pagination, search and sorting)

#000983
Beautiful

Webforms
Multiple input field overlap date picket

#001038 Smart Pages Missing search on columns in Node Table Table Tile

#001019
Beautiful

Webforms

Existing Datatables widgets have data loading issues after

applying hoftix_2.9.0_001

#000886 Smart Pages Toggle Preview not available on Smart Page

#001000
Beautiful

Webforms
Plus button not clickable on FireFox

#000957 Smart Pages Widget Nodes table - Error on selecting nodes

#000971
Beautiful

Webforms

Select from list widget ignore the selected value when it is in

a tab

#000953
Beautiful

Webforms

Workflow comment added many times with SmartView

Template when Tab Action Buttons widget is used

#0001051 Content Script

95 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

ID Scope Description

Real fields in categories are assigned Float values if accessed

through GCSPrimitiveAttribute

#000995
Beautiful

Webforms

Model properties are not updated for widgets in layout

containers.

#000991
Beautiful

Webforms
Make library update more robust

#001013 Module Suite ScriptManager Initialization invalidates Session Cache

#000980 Smart Pages
Custom columns created with new CSSmartView:Columns

functionality not showing in Smart Views

96 Version 3.0.0 (Generoso) - Release notes¶

Copyright © 2013-2025 AnswerModules Sagl

Architecture

Module Suite

Module Suite for Content Server by AnswerModules is a comprehensive framework that

includes various innovative solutions and extensions modules for OpenText Content Server.

Beautiful WebForms¶

The Beautiful WebForms Framework is an enhancement to the standard OpenText

WebForms module that provides developers with all the required tools to create and

manage next generation form based applications on Content Server. The module

significantly contributes in delivering to the application’s end users a modern, comfortable and

ergonomic usage experience while at the same time lowering overall development and

maintenance costs.

Content Script¶

Content Script is the first genuine scripting engine for OpenText Content Server.

Content Script enables the creation of a new type of executable script object, capable

of both automating actions that can be performed through the standard Content

Server UI, as well as creating custom interfaces, consoles, reports, and more.

97 Architecture

Copyright © 2013-2025 AnswerModules Sagl

Content Scripts are foundation blocks that can be used to create any sort of application based

on OpenText Content Server.

Smart Pages¶

Smart Pages is a solution that allows developers to leverage the Content Script

template engine's capabilities to create UI elements of any sort by adopting a rigorous

MVC (https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller)

design pattern. Smart Pages have been primarily engineered to be utilized in the context of

Smart View applications, where they can be useful for creating Smart View perspective tiles.

Smart Pages replaces the Module Suite View extension for Smart View which has been

discontinued at version 1.8.

Script Console¶

Unlike the Content Script Module and Beautiful WebForms Module, which are standard

extension modules and live inside OpenText Content Server, the Content Script Console

is a standalone, multi-platform (Unix, Windows) environment for the execution of

Content Scripts and Beautiful WebForms. As such, it is executed separately from Content Server,

potentially on different physical environments (such as an Administrator’s own workstation or

a server in a network DMZ), but retains the capability of interacting with one or more Content

Server environments.

Module Suite default extensions¶

Module Suite comes out-of-the box with a set of extensions that enable new usage scenarios

for core Content Server modules.

Content Script Extension For Workflows¶

The Content Script Extension for Workflows allows you to add Content Script Steps to new or

existing Content Server Workflow Maps.

Content Script Steps are automatic steps that will execute the associated Content Script when

triggered. The execution outcome will be interpreted by the step itself in order to route the

Note

Content Script API and API Extension Packages (CSEPs)

One of the most powerful features of Content Script lies in the fact that within the Content Script code it is

possible to interact with Content Server itself and with external services or data sources through a set of service

APIs. The API layer is engineered for extensibility, and new APIs are released periodically to enable the most

various tasks. Also, thanks to the Content Script SDK, Modules Suite owners and developers can create their own

extensions. CSEP can be enabled and disabled dynamically from within the administrative pages of Content Server.

98 Module Suite

Copyright © 2013-2025 AnswerModules Sagl

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Workflow to the next step. It is possible to build expressions that check for successful

execution, execution errors or that interpret the outcome of the script.

The usage of Content Script Steps can reduce to a minimum the need for custom Event Trigger

Scripts.

Content Script Extension For WebReports¶

The Content Script Extension for WebReports improves standard WebReports functionality by

introducing new usage scenarios, such as:

the possibility to use a Content Script as a Data Source for WebReports

the possibility to execute WebReports from within a Content Script

the possibility to execute Content Scripts from within a WebReport thanks to a custom

subtag

Module Suite Extension For ClassicUI¶

The Module Suite Extension for CalssicUI is a simple and fast way to enhance the OpenText

Content Server user experience.

This powerful tool gives the possibility to manage: - An objects menu options - Manage default

and custom columns at run-time - Redesign guis by embedding fancy widgets - Customize the

way items are being created in the system - Dynamically create forms without having to write

HTML code - Easily perform massive operations

Module Suite Extensions

ModuleSuite Extensions enhance the capabilities of existing standard Content Server Modules,

if they are installed on the systems.

ModuleSuite Extension For DocuSign¶

ModuleSuite Extension For DocuSign has been developed in order to dramatically simplify the

integration between OpenText Content Server and the DocuSign® signing platform. These

integration solutions are based on AnswerModules' core solution, Module Suite, and thanks to

their outstanding flexibility can be utilized to implement all sorts of use-case scenarios.

•

•

•

99 Module Suite Extensions

Copyright © 2013-2025 AnswerModules Sagl

../../datasheets/WebReports_Extension.pdf
../../datasheets/AnswerModules_DocuSign.pdf

Most common usage scenarios

Manually starting a DocuSign® signing workflow directly within the Content Server UI in

order to have a set of Content Server documents signed by a group of Content Server

users

Manually starting a DocuSign® signing workflow directly within the Content Server UI in

order to have a set of Content Server documents signed by a group of external users;

Managing one or more DocuSign® signing workflows, each one involving both Content

Server users and non-Content Server users, as part of the execution of a Content Server

internal workflow

ModuleSuite Extension For ESign¶

ModuleSuite Extension For ESign allows for Beautiful WebForms to be used as the signing step

in a signature workflow.

Applicative Layers

One of the main reasons that brought to the creation of the Module Suite was the need to

improve Content Server’s capability of integration with other systems. For this very reason, on

top of an OScript Layer that implements most of the Content Script Core functionalities, we

developed an integration layer that makes use of the Content Server embedded Java Virtual

Machine.

Content Script was developed with a language grammar and syntax fully compatible with

Groovy, the well-known Scripting language for Java, in order to speed up development and

most importantly open Content Server to a wider range of developers than the reduced OScript

developers’ community.

On the other hand, being OScript's grammar very similar to Groovy's, OScript developers should

easily find their way with the Content Script language.

•

•

•

Note

100 Applicative Layers

Copyright © 2013-2025 AnswerModules Sagl

Requirements, links and dependencies

Module Suite Compatibility Matrix¶
OpenText Content Server MS 3.2.1 MS 3.3.0 MS 3.4.0 MS 3.5.0 MS 3.6.0 MS 3.7.0

Content Suite 21.1 X X X

Content Suite 21.2 X X X

Content Suite 21.3 X X X

Content Suite 21.4 X X X

Content Suite 22.1 X X X X X

Content Suite 22.2 X X X X X

Content Suite 22.3 X X X X

Content Suite 22.4 X X X

Content Suite 23.1 X(*) X X

Content Suite 23.2 X X X

Content Suite 23.3 X X X

Content Suite 23.4 X X

Content Suite 24.1 X(**) X

Content Suite 24.2 X

Dependencies¶
Module or Component Included In Depends On

Content Script - -

Beautiful WebForms - Content Script

Smart Pages - Content Script

Script Console - Content Script

In recent years, more and more functionalities of Content Server have been making use of the embedded Java

Virtual Machine. Nevertheless, the standard level of isolation of these components has not yet been significantly

improved. It is still up to system administrators and developers to manually assure the absence of conflicts in the

system when new Java libraries become necessary. Module Suite comes with a higher level of isolation and

implements its own additional libraries management

101 Requirements, links and dependencies

Copyright © 2013-2025 AnswerModules Sagl

Module or Component Included In Depends On

Remote Beautiful

WebForms
Script Console Beautiful WebForms

Module Suite Extension

For WebReports
Content Script WebReports

Module Suite Extension

for Workflows
Content Script

Module Suite Extension

for Classic UI
AMGUI Ext.Pack Content Script

Module Suite Extension

for ESign

AnswerModules Content Script

eSign ExtPack

Content Script, Beautiful

Webforms, ESign

Module Suite Extension

for DocuSign

AnswerModules Module Suite

extension for DocuSign

Content Script, Beautiful

Webforms, Script Console

Modules layouts

Module Suite's modules present a peculiar layout that differentiate them from most of the

Content Server's modules you might have worked with. Knowing the modules' internal structure

is of primary importance when it comes to: upgrading, maintaining or extending your Module

Suite instance.

Content Script¶

Content Script features a set of layout differences in respect to standard Content Server

modules. In the following paragraphs each one of these differences is discussed in details.

102 Modules layouts

Copyright © 2013-2025 AnswerModules Sagl

amlib¶

The “amlib” directory contains all the core libraries of the Content Script Java Layer. It is also

used to deploy and manage Content Script Extension packages. If a Content Script API Service

(CSAS) , made available from a CSEP, needs to load its own Java libraries, then they will be

deployed in a sub-directory of the amlib directory having the same name of the Content Script

API Service identifier. This way, two different Content Script API Services can load two different

version of the same Java library.

csscripts¶

Content Script scripts can be used and also invoked directly from OScript. Scripts under this

folder can be executed as part of OScript scripts or functions. Some of them are used to

implement Module Suite’s administrative pages.

library¶

Module Suite's components behaviour and functionalities can be modified and extended by

manipulating the content of the Content Script Volume (a Content Server’s Volume created

when installing the Content Script module).

The purpose of most of the structure and content of the Content Script Volume can be easily

understood by simply navigating the volume thanks to the "convention over configuration"

paradigm that has been adopted. That means that most of the time, simply creating the right

Content Script, Template Folder or Template in the right place will be enough to activate a

specific feature. The default configuration (i.e. the default Content Script Volume's structure)

should be imported as part of the installation procedure of the Content Script module.

In the next sections we will refer to specific locations in the Content Script Volume content as

"Component Library" or simply "Library". This directory contains the default initial version of

the Library and will be used later on to manage Library’s backups and upgrades. The Library

can always be imported, exported or upgraded directly from the Module Suite’s administrative

pages.

override¶

Content Script can be used to deeply customize the Content Server standard UI through a non-

disruptive (applying non-permanent modifications) functionality that allows developers to

override the standard result of a Content Server weblingo file evaluation with the result of a

Content Script execution.

The Content Script OScript APIs are not covered by this training manual.

103 Modules layouts

Copyright © 2013-2025 AnswerModules Sagl

Weblingo override functionality is controlled by XML configuration files to be placed in the

" override" folder in the anscontentscript module.

Within the folder, you should find a sample XML configuration file that should be quite self-

explanatory. The XML file points to a Content Script object, identified by dataID, which

implements the functionality.

Setting the "active" flag to "true" will activate the override.

Beautiful WebForms¶

The most relevant aspects of the module's internal structure for the Beautiful WebForms

module are related with the "support" directory. Beautiful WebForms default View Templates

make use of several JavaScript libraries: they have been selected, written and optimized to

work together with View Templates.

In particular, the Beautiful WebForms’ unique validation framework makes use of the libraries

stored under the "js" directory. The recommended way to load these libraries is to make use of

the Velocity macros expressly designed to load them

<?xml version="1.0" encoding="UTF-8"?>
<override>

<active>false</active>
<target>

<![CDATA[E:\OTHOME\module\webattribute_10_5_0\html\attrstring.html]]>
</target>
<!-- Content Script ID -->
<script>ID</script>
<!-- BEFORE, AFTER, CUSTOM -->
<mode>CUSTOM</mode>
<!-- Optional Script's Parameters -->
<params>

<entry>
<key>key</key>
<value>value</value>

</entry>
</params>

</override>

Please note that this is a very low-level functionality and such might have a significant impact on users' experience

use it with caution. The feature requires a restart every time the configuration is changed.

104 Modules layouts

Copyright © 2013-2025 AnswerModules Sagl

Script console¶

The Script Console internal structure reflects its ability to connect to multiple Content Server

Instances and to organize Content Script scripts in multiple repositories.

Script Console main configuration file¶

The Script Console main configuration file (cs-console-systemConfiguration.xml) is stored

under the config directory. As the naming of the file tells us, it is an XML based configuration

file, intended to include general configuration parameters of the Script Console as well as

Starting with version 2.0 the module's static resources have been deeply revised and re-organized. They are now

structured in a way that reflects the way Beautiful WebForms' widgets are organized in the Content Script volume.

Beautiful WebForms' widget are in fact now organized into libraries.

Since version 1.7.0, the Script Console runtime and configuration folders are all stored under the same installation

path. The Script Console installation folder will appear as shown in figure here below:

105 Modules layouts

Copyright © 2013-2025 AnswerModules Sagl

specific settings related to the Content Server system to which the Script Console can be

connected.

The configuration file is automatically modified by specific actions performed on/through the

Console (such as registering a new target Content Server system) or can be edited manually by

the administrators.

106 Modules layouts

Copyright © 2013-2025 AnswerModules Sagl

Installation and Upgrade

107 Installation and Upgrade

Copyright © 2013-2025 AnswerModules Sagl

Installing Module Suite

installation

Getting ready to install Module Suite¶

Overview of the Module Suite installation process¶

This guide describes the step-by-step procedure that will lead to the installation of the Module

Suite on a Content Server environment, including the following components:

Content Script

Beautiful WebForms

Smart Pages

Depending on the characteristics of the target environment (Unix/Linux or Windows, single

server or clustered, ...) different options might be provided for each installation phase.

The following high-level phases will be covered:

Deployment

This phase covers the deployment of the software binaries on the target system. The

related operations will be typically performed with a click-through installer.

Installation

This phase covers the "installation" phase of the deployed Modules within the target

•

•

•

Install Module Suite components separately

If you are only interested in installing a subset of the available components, please check the dedicated

installation guides for additional guidance:

Installing Content Script

Installing Beautiful WebForms

Installing Smart Pages



•

•

•

Script Console installation

Script Console is a special component that is part of the Module Suite product but follows a different deployment

pattern. This guide does not cover the installation of Script Console.

If you are interested in the Script Console installation, please check the following guide: Installing Script Console.



1.

2.

108 Installing Module Suite

Copyright © 2013-2025 AnswerModules Sagl

../../contentscript/
../../beautifulwebforms/
../../smartui/
../../scriptconsole/

Content Server system. The operation is performed through the standard OpenText

Content Server Administration tools.

Activation

This phase covers the available procedures to apply the required software keys and

activate the Module Suite software. The operations are performed using AnswerModules

Administration tools available within the Content Server Admin pages and standard

OpenText Content Server Administration tools.

Configuration

This phase covers the minimum set of post-installation configuration steps that are

necessary to get the software up and running. This includes importing certain core

libraries and components in the system. The operations are performed using

AnswerModules Administration tools available within the Content Server Admin pages.

Post-installation patching

From time to time, hotfixes and patches are released to provide new features and

address product issues. It is always suggested to keep the system up-to-date with all

relevant patches and hotfixes, starting from the initial installation.

Prerequisites¶

This guide assumes certain resources to be readily available while performing the installation.

Please ensure the following have been provisioned before starting the installation process:

3.

4.

5.

Installing on a Clustered Environment

When installing on a clustered Content Server environment, the overall installation procedure will vary.

In a clustered environment it is mandatory to install the Module Suite components on all nodes, but it is important

to notice that the single installation steps must not be performed on each single node separately, as certain

operations already affect the whole cluster.

At a high level, the suggested procedure is to perform a complete installation on the primary node of the cluster,

and then reconcile the remaining nodes.

Please refer to the Installing on a clustered environment guide for detailed info.

 Admin-level access to the servers on which the software will be installed

 Admin user access to the Content Server instance.

 The Module Suite installers or installation packages compatible with the target

environment


Installer versions

Before proceeding with the installation, make sure that the installer version matches the OpenText Content

Server target system version.



109 Getting ready to install Module Suite¶

Copyright © 2013-2025 AnswerModules Sagl

../../clustered_installation/

E.g.:

module-suite-2.7.0-OTCS162.exe is the Windows installer for OpenText Content Server 16.2.X;

module-suite-2.6.0-OTCS162.exe is the Windows installer for OpenText Content Server 16.2.X;

module-suite-2.5.0-OTCS162.exe is the Windows installer for OpenText Content Server 16.2.X;

module-suite-2.4.0-OTCS16.exe is the Windows installer for OpenText Content Server 16.0.X;

module-amcontentscript-2.3.0-OTCS105.exe is the Windows installer for OpenText Content Server

10.5.X;

module-amcontentscript-2.2.0-OTCS10.exe is the Windows installer for OpenText Content Server

10.0.X;

Note: Starting with version 3.2.0, the OTCS identifier (OTCS10, OTCS105, OTCS162 ...) is no longer present in the

installer names.

◦

◦

◦

◦

◦

◦

 A valid AnswerModules activation key, either in plain text format or in OTCS

Configuration Export XML format. The latter is the suggested option as it will prevent

errors due to manual input.



Keys and System Fingerprint

An activation key is only required starting from version 1.7.0 of the Module Suite.

Starting from version 2.0.0 activation keys are bound to the system’s fingerprint.



◦

◦

How do I get an activation key?

In order to activate Module Suite you need a valid activation key. Activation keys can be requested to

AnswerModules Support (https://support.answermodules.com) by providing the OpenText Content Server

System Fingerprint.

You can read your's environment fingerprint from the OpenText Admin Pages as shown below



110 Getting ready to install Module Suite¶

Copyright © 2013-2025 AnswerModules Sagl

https://support.answermodules.com
https://support.answermodules.com

 Any relevant hotfixes released for the Module Suite version being installed 

Hotfixes

Hotfixes and patches are continuously published on the AnswerModules Support Portal. Check the

availability of applicable patches when starting a new installation.

E.g. https://support.answermodules.com/portal/en/kb/articles/module-suite-3-5-0-hotfixes-and-patches

(https://support.answermodules.com/portal/en/kb/articles/module-suite-3-5-0-hotfixes-and-patches)



Next Steps

Once all the prerequisites are met, please proceed to the Deployment phase:

if you are installing on a Windows environment: Deploy on Windows

if you are installing on a Unix/Linux environment: Deploy on Unix/Linux

•

•

111 Getting ready to install Module Suite¶

Copyright © 2013-2025 AnswerModules Sagl

https://support.answermodules.com/portal/en/kb/articles/module-suite-3-5-0-hotfixes-and-patches
https://support.answermodules.com/portal/en/kb/articles/module-suite-3-5-0-hotfixes-and-patches
https://support.answermodules.com/portal/en/kb/articles/module-suite-3-5-0-hotfixes-and-patches
https://support.answermodules.com/portal/en/kb/articles/module-suite-3-5-0-hotfixes-and-patches
../deploy_windows/
../deploy_unix/

Deploy

installation

Module Suite installation guide: Deploy
Modules on Windows¶

Overview¶

This guide covers the Deployment phase that is part of the Module Suite installation guide.

This phase covers the deployment of the software binaries on the target system. The related

operations will be performed with a click-through installer.

We will refer to the Content Server main installation directory as %OTCS_HOME% .

Step-by-step Deployment¶

In order to deploy the Module Suite components, please follow these steps:

Deployment
 Installation
 Activation
 Configuration
 Post-installation patching

Platform specific

This guide is specific to the installation steps for a Windows environment. If you are installing on a Unix/Linux

environment, please refer to Deploy on Unix/Linux.

Installers

The guide assumes that the required Module Suite installers for Windows have been provisioned and copied on the

file system of the target environment.

 Stop the Content Server services

 Run the Module Suite Master Installer

112 Deploy

Copyright © 2013-2025 AnswerModules Sagl

../deploy_unix/

At this time, we will be installing the core Module Suite Content Server modules (Content

Script, Beautiful WebForms, Smart Pages) and all the desired Module Suite Extension

packages.

The following screens will guide you through the deployment of Module Suite modules.

Welcome screen:

Select “Next” when ready to start the installation.



Accept Module Suite EULA:

Acceptance of the end-user license agreement is mandatory for proceeding with the

installation.

Select “Next” when ready.



Accepted agreement

A copy of the EULA agreement will be available, upon installation, in:

%OTCS_HOME%/module/amcontentscript_X_Y_Z/license/EULA

113 Module Suite installation guide: Deploy Modules on Windows¶

Copyright © 2013-2025 AnswerModules Sagl

Select the components to be installed:

Select the components to install.

Select “Next” when ready.



Partial installation

If you are intending to install only a subset of components, uncheck the elements that are not required

from the list.

Dependencies

The following components:

Beautiful WebForms

Smart Pages

Module Suite Extensions

depend on the "Content Script" module.

If you are intending to perform a partial installation, please make sure that "Content Script" is either

selected or has already been installed in the system.

◦

◦

◦

114 Module Suite installation guide: Deploy Modules on Windows¶

Copyright © 2013-2025 AnswerModules Sagl

Confirm the installation path:

The installer will prompt you for the location where Content Server is installed. Browse

to your OTCS_HOME and select “Next” when ready to start the installation.



Deployment (automatic step):

115 Module Suite installation guide: Deploy Modules on Windows¶

Copyright © 2013-2025 AnswerModules Sagl

Automatic import of Content Server dependencies: The installer will automatically

attempt to load a few libraries from Content Server.

In case of failure, a warning message could appear during this phase of the installation.

In such case, the operation must be performed manually.

What to do if the installer raises the error: Unable to automatically extract...

Some Content Script extension packages require two Java libraries that are specific to the target Content

Server environment and are not distributed with the module.

The required library files are:

csapi.jar

service-api-X.X.XX.jar

and can be found in the web app located in:

%OTCS_HOME%\webservices\java\webapps\cws.war (on CS 16.X)

%OTCS_HOME%\webservices\java\webapps\cws.war (on CS 10.5.X)



◦

◦

◦

◦

116 Module Suite installation guide: Deploy Modules on Windows¶

Copyright © 2013-2025 AnswerModules Sagl

To retrieve the files:

copy the file named XXX.war to a temporary folder

rename the file XXX.war in XXX.zip .

extract the zip archive contents locate the files in the WEB-INF/lib folder

Once the files have been located, copy them to the folder:

%OTCS_HOME\staging\anscontentscript_x_y_z\amlib

◦

◦

◦

Start the extension packages installation:

Welcome Screen: Select “Next” when ready to start the installation.



Optional

This will only appear if the "Module Suite Extensions" option has been selected in the master installer.

Accept the extensions supplemental EULA:

EULA Screen: Acceptance of the end-user license agreement is mandatory to proceed

with the installation.



Optional

This will only appear if the "Module Suite Extensions" option has been selected in the master installer.

117 Module Suite installation guide: Deploy Modules on Windows¶

Copyright © 2013-2025 AnswerModules Sagl

Select “Next” when ready.

Accepted agreement

A copy of the EULA agreement will be available, upon installation, in:

%OTCS_HOME%/module/amcontentscript_X_Y_Z/license/EULA

Select the extension packages to be installed:

Mandatory Components

During the deployment phase, two components are mandatory and MUST be installed:

Module Suite Extensions Cache

Module Suite Extensions SQL

These components are prerequisites for several Administration tools, including the Content Script Volume

Import tool.

1.

2.

Do not skip mandatory components

Failing to install these components may result in certain Administration tools not functioning correctly.

Optional

This will only appear if the "Module Suite Extensions" option has been selected in the master installer.

118 Module Suite installation guide: Deploy Modules on Windows¶

Copyright © 2013-2025 AnswerModules Sagl

Components selection: Select all of the extension components that are to be installed.

Select “Install” when ready.

CSEP SAP

The Content Script Extension for SAP™ is a Content Script optional extension package that requires specific

additional configuration steps.

It should not be deployed if you are not intending to complete the configuration, as an incomplete

configuration could affect the Module Suite functionality.

This extension package requires the SAP™ JCo library (https://support.sap.com/en/product/connectors/

JCo.html) to be available in the extension repository <OTHOME>/module/anscontentscript_x_y_z/amlib/sap

and is certified for use with SAP™ JCo version (3.0.6) when used on OpenText Extended ECM and version

(3.0.10) when used on CSP. SAP™ JCo library (https://support.sap.com/en/product/connectors/JCo.html) can

be downloaded from SAP™ website.

More on this extension.

Confirm the installation path:

The installer will prompt you for the location where Content Server is installed. Browse

to your OTCS_HOME and select “Next” when ready to start the installation.



Optional

This will only appear if the "Module Suite Extensions" option has been selected in the master installer.

119 Module Suite installation guide: Deploy Modules on Windows¶

Copyright © 2013-2025 AnswerModules Sagl

https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html

Deployment (automatic step):

Extension Package Installation: The extension packages are automatically installed.

Select “Next” when the procedure is complete.



Optional

This will only appear if the "Module Suite Extensions" option has been selected in the master installer.

120 Module Suite installation guide: Deploy Modules on Windows¶

Copyright © 2013-2025 AnswerModules Sagl

Deployment complete:

Extension Package Installation completed: Select “Finish” and return to the installation

checklist to finalize the module setup.



Optional

This will only appear if the "Module Suite Extensions" option has been selected in the master installer.

121 Module Suite installation guide: Deploy Modules on Windows¶

Copyright © 2013-2025 AnswerModules Sagl

Master installer deployment (automatic step):

Module Suite Installation: Module Suite components installation is finalized. Select

“Next” when the procedure is complete.



Deployment complete:

122 Module Suite installation guide: Deploy Modules on Windows¶

Copyright © 2013-2025 AnswerModules Sagl

installation unix

Module Suite installation guide: Deploy
Modules on Unix/Linux¶

Overview¶

This guide covers the Deployment phase that is part of the Module Suite installation guide.

Module Suite Installation completed: Select “Finish” and return to the installation

checklist to finalize the module setup.

 At this point, the Modules have been deployed in the Content Server Staging folder and

is available for installing it through the Content Server administration pages.


Next Steps

Please proceed to the Installation phase.

Deployment
 Installation
 Activation

123 Module Suite installation guide: Deploy Modules on Unix/Linux¶

Copyright © 2013-2025 AnswerModules Sagl

../install/

This phase covers the deployment of the software binaries on the target system. The related

operations will be performed with a click-through installer.

We will refer to the Content Server main installation directory as %OTCS_HOME% .

Step-by-step Deployment¶

In order to deploy the Module Suite components, please follow these steps:

 Configuration
 Post-installation patching

Unix/Linux expertise required

This guide assumes a good working knowledge of a Unix System and its commands

Platform specific

This guide is specific to the installation steps for a Unix/Linux environment. If you are installing on a Windows

environment, please refer to Deploy on Windows.

Installers

The guide assumes that the required Module Suite installer scripts for Unix/Linux have been provisioned and

copied on the file system of the target environment.

 Stop the Content Server services

 Open a terminal window

At this time, we will be installing the core Module Suite Content Server modules (Content

Script, Beautiful WebForms, Smart Pages) and all the desired Module Suite Extension

packages.

The following screens will guide you through the deployment of Module Suite modules.



Extract archive:

Extract ModuleSuite compressed archive file into a temporary location

tar -xvzf modulesuite_3_2_0.tar.gz



Run installation script and accept EULA:

124 Module Suite installation guide: Deploy Modules on Unix/Linux¶

Copyright © 2013-2025 AnswerModules Sagl

../deploy_windows/

Run the installation script:

./modulsuitesetup.sh

and follow the interactive prompts.

Acceptance of the end-user license agreement is mandatory for proceeding with the

installation.

A copy of the agreement will be available, upon installation, in:

%OTCS_HOME%/module/amcontentscript_X_Y_Z/license/EULA

Accepting the End User Agreement is mandatory to proceed with the installation.

Enter “Y” when ready.

Confirm OTCS installation folder:

The installer will prompt you for the location where Content Server is installed. Either

confirm (ENTER) the default location or enter the correct location to proceed with the

installation.



Deployment (automatic step):

125 Module Suite installation guide: Deploy Modules on Unix/Linux¶

Copyright © 2013-2025 AnswerModules Sagl

Automatic import of Content Server dependencies: The installer will automatically

attempt to load a few libraries from Content Server.

In case of failure, a warning message could appear during this phase of the installation.

In such case, the operation must be performed manually.

Select extension packages:

Enter “Y” to install the extension when prompted.

It should not be deployed if you are not intending to complete the configuration, as an

incomplete configuration could affect the Module Suite functionality.

This extension package requires the SAP™ JCo library (https://support.sap.com/en/

product/connectors/JCo.html) to be available in the extension repository <OTHOME>/module/

anscontentscript_x_y_z/amlib/sap and is certified for use with SAP™ JCo version (3.0.6) when

used on OpenText Extended ECM and version (3.0.10) when used on CSP. SAP™ JCo library

(https://support.sap.com/en/product/connectors/JCo.html) can be downloaded from

SAP™ website.

More on this extension (/installation/extpacks/#content-script-extension-for-sap).



Mandatory Components

During the deployment phase, two components are mandatory and MUST be installed:

Module Suite Extensions Cache

Module Suite Extensions SQL

These components are prerequisites for several Administration tools, including the Content Script Volume

Import tool.

1.

2.

Do not skip mandatory components

Failing to install these components may result in certain Administration tools not functioning correctly.

CSEP SAP

The Content Script Extension for SAP™ is a Content Script optional extension package that requires specific

additional configuration steps.

126 Module Suite installation guide: Deploy Modules on Unix/Linux¶

Copyright © 2013-2025 AnswerModules Sagl

https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
/installation/extpacks/#content-script-extension-for-sap
/installation/extpacks/#content-script-extension-for-sap

installation

What to do if the installer raises the error: Unable to automatically extract...

Some Content Script extension packages require two Java libraries that are specific to the target Content Server

environment and are not distributed with the module.

The required library files are:

csapi.jar

service-api-X.X.XX.jar

and can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cws.war

classificationsservice-api-X.X.XX.jar

which can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cs-services-classifications.war

physicalobjectsservice-api-X.X.XX.jar

which can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cs-services-physicalobjects.war

recordsmanagementservice-api-X.X.XX.jar

which can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cs-services-recordsmanagement.war

To retrieve the files:

copy the file named XXX.war to a temporary folder

rename the file XXX.war in XXX.zip

extract the zip archive contents locate the files in the WEB-INF/lib folder

Once the files have been located, copy them to the folder:

%OTCS_HOME\staging\anscontentscript_x_y_z\amlib



•

•

•

•

•

•

•

•

 At this point, the Modules have been deployed in the Content Server Staging folder and

is available for installing it through the Content Server administration pages.


Next Steps

Please proceed to the Installation phase.

127 Module Suite installation guide: Deploy Modules on Unix/Linux¶

Copyright © 2013-2025 AnswerModules Sagl

../install/

Module Suite installation guide: Install
Modules¶

Overview¶

This guide covers the Installation phase that is part of the Module Suite installation guide.

This phase covers the Content Server installation of the optional modules previously deployed

on the system during the Deployment phase. The related operations will be performed using

the Content Server standard administration tools.

Step-by-step Installation¶

In order to proceed with the installation of the modules, please follow these steps:

Deployment
Installation
 Activation
 Configuration
 Post-installation patching

Only perform after previous phases are complete

The guide assumes that the Module Deployment phase has already been completed on the target environment. If

that is not the case, please go back to the Installation overview.

 Start the Content Server services

 Login as Administrator and access the Module administration panel

128 Module Suite installation guide: Install Modules¶

Copyright © 2013-2025 AnswerModules Sagl

../getstarted/

Apply the available hotfixes¶

 Access the Content Server Admin pages > Core System - Module Configuration > Install

Modules


 From the available modules, select “AnswerModules Content Script x.y.z”

 Follow the installation steps and restart Content Server when prompted.

 From the Administration Home, access the Module administration panel

 Select “Install Modules”

 From the available modules, select “Answer Modules - Beautiful Web Forms x.y.z”

 Follow the installation steps and restart Content Server when prompted.

 From the Administration Home, access the Module administration panel

 Select “Install Modules”

 From the available modules, select “Answer Modules - Smart Pages x.y.z”

 Follow the installation steps and restart Content Server when prompted.

 At this point, the Modules have been installed in the Content Server system.

 Stop Content Server

 Apply relevant hot fixes

 Start Content Server

Next Steps

If you plan to apply the license key manually, please proceed to Activation through manual key setup.•

129 Module Suite installation guide: Install Modules¶

Copyright © 2013-2025 AnswerModules Sagl

../activate_manual/

Alternatively, if you plan to import the licensing configuration settings, please proceed to the Activation

through key import.

•

130 Module Suite installation guide: Install Modules¶

Copyright © 2013-2025 AnswerModules Sagl

../activate_import/
../activate_import/

Activate

installation

Module Suite installation guide: Importing the
activation key¶

Overview¶

This guide covers the software Activation phase that is part of the Module Suite installation

guide.

This phase covers the activation of the modules previously deployed and installed on the

system during the Deployment and Installation phases. The related operations will be

performed using the Module Suite administration tools, as well as the Content Server standard

administration tools.

Deployment
Installation
Activation
 Configuration
 Post-installation patching

Only perform after previous phases are complete

The guide assumes that the Module Deployment and Module Installation phases have already been completed on

the target environment. If that is not the case, please go back to the Installation overview.

Licensing on a Clustered Environment

Since version 3.1.0, if the installation is performed on a multi-server architecture is no longer necessary to repeat

the activation process on all the node of the cluster since the License Key information is stored in the Content

Server's database.

131 Activate

Copyright © 2013-2025 AnswerModules Sagl

../getstarted/

Locating the Activation Key in Your Module Suite Fulfillment
Document¶

After purchasing Module Suite, you'll receive a fulfillment document containing your activation

key. Here's how to find it:

Open your fulfillment document.

Scroll to the "Software activation" section.

Locate the table labeled "Activation key for: Module Suite Named User".

Find the row labeled "Activation key".

The activation key is the long string of characters in the cell below this label.

1.

2.

3.

4.

5.

132 Module Suite installation guide: Importing the activation key¶

Copyright © 2013-2025 AnswerModules Sagl

Example¶

133 Module Suite installation guide: Importing the activation key¶

Copyright © 2013-2025 AnswerModules Sagl

Importing the License Key¶

Copying the Activation Key

Copy the entire key as a single line of text.

Do not include any extra characters, leading/trailing spaces, or line feeds.

Double-check for accuracy when copying.

•

•

•

Version Specificity

The activation key is specific to the Module Suite version listed in the document. For upgrades to different versions,

you'll need a new license key generated.

 As the system Admin user, open the Content Server Administration pages.

 Locate the Core System - Feature Configuration section. Within this section, open the

Import and Export Administration Settings tool.


 Within the Import and Export Administration Settings page, locate the Import

Administration Settings entry.


134 Module Suite installation guide: Importing the activation key¶

Copyright © 2013-2025 AnswerModules Sagl

 In the File Path field, locate and select the AnswerModules Activation Key XML file. Then,

click on "Import".


 Updating the activation key requires a system restart. Click "Continue to Restart" to be

redirected to the Restart page.


 Click Restart

135 Module Suite installation guide: Importing the activation key¶

Copyright © 2013-2025 AnswerModules Sagl

 Wait for the system to complete the Restart operation. Once complete, click Continue.

 After the restart, navigate to the AnswerModules administration pages to check the

results of the activation operations.

In the Content Server Administration pages, locate the AnswerModules Administration

section. Within this section, open the Base Configuration tool.



 At the top of the Base Configuration page, check the validity of the newly applied key.

When a valid activation key is present, the key details will be visibile to the administrator.



Next Steps

136 Module Suite installation guide: Importing the activation key¶

Copyright © 2013-2025 AnswerModules Sagl

installation

Module Suite installation guide: Manually
setting the activation key¶

Overview¶

This guide covers the software Activation phase that is part of the Module Suite installation

guide.

This phase covers the activation of the modules previously deployed and installed on the

system during the Deployment and Installation phases. The related operations will be

performed using the Module Suite administration tools, as well as the Content Server standard

administration tools.

Locating the Activation Key in Your Module Suite Fulfillment
Document¶

After purchasing Module Suite, you'll receive a fulfillment document containing your activation

key. Here's how to find it:

Open your fulfillment document.

Please proceed to the Configuration phase.

Deployment
Installation
Activation
 Configuration
 Post-installation patching

Only perform after previous phases are complete

The guide assumes that the Module Deployment and Module Installation phases have already been completed on

the target environment. If that is not the case, please go back to the Installation overview.

Licensing on a Clustered Environment

Since version 3.1.0, if the installation is performed on a multi-server architecture is no longer necessary to repeat

the activation process on all the node of the cluster since the License Key information is stored in the Content

Server's database.

1.

137 Module Suite installation guide: Manually setting the activation key¶

Copyright © 2013-2025 AnswerModules Sagl

../configure/
../getstarted/

Scroll to the "Software activation" section.

Locate the table labeled "Activation key for: Module Suite Named User".

Find the row labeled "Activation key".

The activation key is the long string of characters in the cell below this label.

2.

3.

4.

5.

138 Module Suite installation guide: Manually setting the activation key¶

Copyright © 2013-2025 AnswerModules Sagl

Example¶

139 Module Suite installation guide: Manually setting the activation key¶

Copyright © 2013-2025 AnswerModules Sagl

Applying the License Key manually¶

Copying the Activation Key

Copy the entire key as a single line of text.

Do not include any extra characters, leading/trailing spaces, or line feeds.

Double-check for accuracy when copying.

•

•

•

Version Specificity

The activation key is specific to the Module Suite version listed in the document. For upgrades to different versions,

you'll need a new license key generated.

 As the system Admin user, open the Content Server Administration pages.

 Locate the AnswerModules Administration section. Within this section, open the Base

Configuration tool.


 Within the Base Configuration page, locate the Module Suite - Activation Key entry (it

can be found in the Core section).


140 Module Suite installation guide: Manually setting the activation key¶

Copyright © 2013-2025 AnswerModules Sagl

 Enter the activation key in the text area.

License key format

When copying the license key, make sure that no whitespaces or new line characters are included.

 Save the Base Configuration and restart Content Server when prompted.

 After the restart, check the validity of the newly applied license at the top of the Base

Configuration page.

When a valid license is present, the license details will be visibile to the administrator.



Next Steps

141 Module Suite installation guide: Manually setting the activation key¶

Copyright © 2013-2025 AnswerModules Sagl

installation

Module Suite installation guide: Initial
Configuration¶

Overview¶

This guide covers the Configuration phase that is part of the Module Suite installation guide.

This phase covers the minimal configuration of the optional modules previously deployed and

installed on the system during the Deployment and Installation phases. The related operations

will be performed using the Module Suite administration tools.

Importing the core library components¶

Once the software has been activated, it is possible to proceed with the setup of the minimal

configuration settings required to run Module Suite. This includes creating a number of

runtime elements within the "Content Script Volume", a special container for Module Suite

configuration objects.

More details on the Content Script Volume and its structure can be found here.

Proceed with the following steps to complete the initial configuration.

Please proceed to the Configuration phase.

Deployment
Installation
Activation
Configuration
 Post-installation patching

Only perform after previous phases are complete

The guide assumes that the Module Deployment, Installation and Activation phases have already been completed

on the target environment. If that is not the case, please go back to the Installation overview.

 As the system Admin user, open the Content Server Administration pages.

142 Module Suite installation guide: Initial Configuration¶

Copyright © 2013-2025 AnswerModules Sagl

../configure/
../getstarted/
../../../administration/csvolume/

 Locate the AnswerModules Administration section. Within this section, open the Content

Script Volume Import tool.


 Within the Content Script Volume Import page, locate the Library Update section (it can

be found at the very top of the page).

Click the Import button.



 Wait for the import operation to complete.

 Once the operation is complete, a success message will be shown. Upon refreshing the

page, the Library Update section will no longer be shown.


 After the restart, navigate to the AnswerModules administration pages to check the

results of the import operations.


143 Module Suite installation guide: Initial Configuration¶

Copyright © 2013-2025 AnswerModules Sagl

../../../administration/csvolume_import_tool/
../../../administration/csvolume_import_tool/

installation

In the Content Server Administration pages, locate the AnswerModules Administration

section. Within this section, click on the Open the Content Script Volume link.

 The following minimum set of folders will have been created in the Content Script

Volume.


Next Steps

Please proceed to the Post installation patching phase.

144 Module Suite installation guide: Initial Configuration¶

Copyright © 2013-2025 AnswerModules Sagl

../patch/

Module Suite installation guide: Install
Hotfixes¶

Overview¶

This guide covers the Post-installation patching phase that is part of the Module Suite

installation guide.

This phase refers to the final operations that are required to ensure that the target system is

up to date with all relevant software patches and hotfixes.

Applying patches¶

Each Module Suite patch is released with its own Patch Notes and (optionally) with specific

installation tasks. Please refer to the generic Applying Hotfixes guide for detailed information

on this topic.

clustered installation installation

Installing Module Suite on a clustered
environment¶

In a Content Server cluster environment, it is mandatory to install Module Suite modules on

each node that makes up the cluster.

Deployment
Installation
Activation
Configuration
Post-installation patching

Only perform after previous phases are complete

The guide assumes that the Module Deployment, Installation, Activation and Configuration phases have already

been completed on the target environment. If that is not the case, please go back to the Installation overview.

Installation complete

Congratulations! The Module Suite's initial setup is now complete.

145 Module Suite installation guide: Install Hotfixes¶

Copyright © 2013-2025 AnswerModules Sagl

../getstarted/
../../hotfixes/

The installation process in a cluster is more complex than installing on a single server, as a

slightly different procedure must be performed on each remaining node in the cluster after

installing the modules on the first one. The recommended approach is to install Module Suite

on a primary node (the node on which the primary OpenText Admin Content Server services

are installed and configured) and then copy the installed modules to each node in the cluster.

This approach ensures that all installed modules are identical and that the patch level on all

nodes is the same.

Deployment on the primary node¶

Module Suite package installation on a Primary node is identical to the installatoin process

into the non-clustered environment.

Deployment on the secondary node(s)¶

Once the Module Suite modules are installed on the primary node, the module packages can

be deployed on the remaining cluster nodes.

Proceed with the following installation steps on all Secondary nodes

We will refer to the Content Server installation directory as %OTCS_HOME%.

 Stop Content Server services on all the nodes in the cluster

 Proceed with the Module Suite installation on the Primary node

Detailed description of this procedure can be found in Installing Module Suite guide.



 Make a copy of the following resources and make them available in a working folder on

the Secondary node:

%OTCS_HOME%/module/anscontentscript_x_x_x

%OTCS_HOME%/module/ansbwebform_x_x_x

%OTCS_HOME%/module/anscontentsmartui_x_x_x

%OTCS_HOME%/support/anscontentscript

%OTCS_HOME%/support/ansbwebform

%OTCS_HOME%/support/anscontentsmartui



1.

2.

3.

4.

5.

6.

Installed Modules

The actual folders to be copied depend on the Module that have been installed on the Primary node.

e.g. if you are only installing Content Script and Beautiful WebForms modules, the "anscontensmartui"

folders will not be available in the Primary node.

 On the Secondary node, ensure that all Content Server services are stopped.

146 Installing Module Suite on a clustered environment¶

Copyright © 2013-2025 AnswerModules Sagl

../modulesuite/getstarted/

container installation

Install Module Suite on OpenText Extended
ECM CE¶

Overview of the installation phases¶

This guide provides the complementary steps of the OpenText Extended ECM CE 2X.Y - Cloud

Deployment Guide for deploying the Module Suite on the OpenText Extended ECM 2X.Y in a

Kubernetes Cluster.

 On the Secondary node, copy all the modules and support folders previously identified

to their corresponding target location within %OTCS_HOME%.


 On the Secondary node, proceed to manually reconcile the opentext.ini file in

%OTCS_HOME%/config.

Pay particular attention to the [Modules] and [javaserver] sections on the opentext.ini file.



 On the Secondary node, start the Content Server services.

Check the official OpenText documentation

147 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

What is covered by this guide¶

This guide covers the following high-level phases:

Build Init Containers: This phase covers the deployment of the Module Suite software

binaries on an external image repository in the form of Init containers. The operations

are performed using command-line commands.

Deployment: This phase covers the definition of the arguments to be added to the

standard Helm installation command for deploying the Module Suite and OpenText

This guide is based on the OpenText Extended ECM CE 24.2 - Cloud Deployment Guide

(https://webapp.opentext.com/piroot/sulccd/v240300/sulccd-igd/en/html/_manual.htm). Procedures may vary for

other versions of OpenText Extended ECM. Always refer to the appropriate "OpenText Extended ECM CE X.Y - Cloud

Deployment Guide" for your specific version, as parameters and arguments discussed in this manual may differ.

1.

2.

148 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

https://webapp.opentext.com/piroot/sulccd/v240300/sulccd-igd/en/html/_manual.htm
https://webapp.opentext.com/piroot/sulccd/v240300/sulccd-igd/en/html/_manual.htm
https://webapp.opentext.com/piroot/sulccd/v240300/sulccd-igd/en/html/_manual.htm
https://webapp.opentext.com/piroot/sulccd/v240300/sulccd-igd/en/html/_manual.htm
https://webapp.opentext.com/piroot/sulccd/v240300/sulccd-igd/en/html/_manual.htm
https://webapp.opentext.com/piroot/sulccd/v240300/sulccd-igd/en/html/_manual.htm
https://webapp.opentext.com/piroot/sulccd/v240300/sulccd-igd/en/html/_manual.htm
https://webapp.opentext.com/piroot/sulccd/v240300/sulccd-igd/en/html/_manual.htm

Extended ECM in the target Kubernetes Cluster. The operations are performed using

command-line commands.

Prerequisites¶

A host PC or VM is required for leveraging the deployment/installation process. This host

should contain the following software:

The destination Kubernetes cluster hyperscaler client software

Docker

Kubectl

Helm

The latest publicly available Alpine Linux image

Activation and Configuration

For detailed instructions on activation and configuration, always consult the most recent version of the

official Module Suite documentation. For information on activating the Module Suite software, please refer

to the official documentation: Activate and Import Module Suite (https://developer.answermodules.com/

manuals/current/installation/modulesuite/activate_import/) For information on post-installation

configuration steps, including importing core libraries and components, please refer to the official

documentation: Configure Module Suite (https://developer.answermodules.com/manuals/current/

installation/modulesuite/configure/)

•

•

•

•

•

This guide presumes the usage of a Linux host PC or VM.

149 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

https://developer.answermodules.com/manuals/current/installation/modulesuite/activate_import/
https://developer.answermodules.com/manuals/current/installation/modulesuite/activate_import/
https://developer.answermodules.com/manuals/current/installation/modulesuite/activate_import/
https://developer.answermodules.com/manuals/current/installation/modulesuite/activate_import/
https://developer.answermodules.com/manuals/current/installation/modulesuite/configure/
https://developer.answermodules.com/manuals/current/installation/modulesuite/configure/
https://developer.answermodules.com/manuals/current/installation/modulesuite/configure/
https://developer.answermodules.com/manuals/current/installation/modulesuite/configure/

Software Download References¶

Kubernetes cluster hyperscaler client software: AWS: AWS CLI

(https://aws.amazon.com/cli/), Azure: Azure CLI

1.

150 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

(https://docs.microsoft.com/en-us/cli/azure/install-azure-cli), Google Cloud: Google

Cloud SDK

151 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/install

(https://cloud.google.com/sdk/docs/install)

152 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/install

Docker: Docker Engine installation

(https://docs.docker.com/engine/install/)

2.

153 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

Kubectl: kubectl installation

(https://kubernetes.io/docs/tasks/tools/)

3.

154 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/

Helm: Helm installation

(https://helm.sh/docs/intro/install/)

4.

155 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/

Alpine Linux image: Alpine Linux Docker image

(https://hub.docker.com/_/alpine)

Additional Requirements¶

Module Suite System Center compatible artifacts: Module Suite modules suitable for

installation with OpenText System Center.

AnswerModules activation key: Either in plain text format or in an OTCS Configuration

Export XML format. The XML format is recommended to prevent errors due to manual

input.

5.

1.

Check Module Suite release notes for compatibility

Always verify on the Module Suite release notes the compatibility of the Module Suite version with the

OpenText Extended ECM CE application.

2.

156 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine
https://hub.docker.com/_/alpine

External image repository: Available for hosting the AnswerModules Module Suite init

containers.

Please ensure you download and install the appropriate versions compatible with your system

and the version of OpenText Extended ECM CE you are deploying.

Build Init Containers¶

In this phase, we'll prepare the AnswerModules Module Suite Init containers and upload them

to an external container repository. This crucial step enables the integration of Module Suite

with OpenText Extended ECM in a Kubernetes environment.

Understanding Init Containers¶

Init containers are a powerful feature in Kubernetes that run before the main application

containers in a pod. They serve several important purposes:

Environment preparation: Set up necessary configurations or data.

Dependency checks: Ensure required services are available.

Initialization tasks: Perform one-time setup operations.

In our specific use case, init containers will add the Module Suite modules to the OpenText

Extended ECM installation, ensuring all necessary components are in place before the main

application starts.

How to get System Center artifacts and Activation Key

To obtain the Module Suite artifacts and its activation key, open a request to the AnswerModules Support

Team at Request Activation Key (mailto:support@answermodules.zohosupport.com?

subject=Activation%20Key%20Request&body=We%20are%20requesting%20a%20valid%20activation%20key%20for%20Module%20Suite%20X.Y.Z%20to%20be%20used%20in%20conjunction%20with%20OpenText%20xECM%20version%20A.B.C.)

3.

This guide presumes the usage of Dockerhub as the external image repository.

1.

2.

3.

More about Init Containers

For more detailed information about init containers, refer to the official Kubernetes documentation: Init Containers

| Kubernetes (https://kubernetes.io/docs/concepts/workloads/pods/init-containers/)

Get all you need

Before proceeding, please ensure you have:

A Dockerhub account (or access to another container registry).

Familiarity with:

Unix systems and commands

1.

2.

◦

157 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

mailto:support@answermodules.zohosupport.com?subject=Activation%20Key%20Request&body=We%20are%20requesting%20a%20valid%20activation%20key%20for%20Module%20Suite%20X.Y.Z%20to%20be%20used%20in%20conjunction%20with%20OpenText%20xECM%20version%20A.B.C.
mailto:support@answermodules.zohosupport.com?subject=Activation%20Key%20Request&body=We%20are%20requesting%20a%20valid%20activation%20key%20for%20Module%20Suite%20X.Y.Z%20to%20be%20used%20in%20conjunction%20with%20OpenText%20xECM%20version%20A.B.C.
mailto:support@answermodules.zohosupport.com?subject=Activation%20Key%20Request&body=We%20are%20requesting%20a%20valid%20activation%20key%20for%20Module%20Suite%20X.Y.Z%20to%20be%20used%20in%20conjunction%20with%20OpenText%20xECM%20version%20A.B.C.
mailto:support@answermodules.zohosupport.com?subject=Activation%20Key%20Request&body=We%20are%20requesting%20a%20valid%20activation%20key%20for%20Module%20Suite%20X.Y.Z%20to%20be%20used%20in%20conjunction%20with%20OpenText%20xECM%20version%20A.B.C.
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Step-by-Step Procedure¶

Access the Linux host PC or VM designated for the installation process and follow these steps:

Init Container FS structure¶

Create main folder

Create a new folder on the host machine (e.g., MSInitContainer)

Create subfolder

Inside the main folder, create a subfolder (e.g., Init)

Add Dockerfile

Copy the Dockerfile_init file (obtained from OpenText My Support) into the Init

folder

Create the extensions folder

Inside the Init folder, create a new folder named extensions

Set up the extensions folder structure

Navigate to the extensions folder

Create the following folder structure:

Set up apps folder structure

Navigate to the extensions/apps/ folder

Create the following folder structure:

Docker and its command-line interface

Basic Kubernetes concepts

◦

◦

1.

◦

2.

◦

3.

◦

4.

◦

5.

◦

◦

extensions/
├── apps/
├── language_packs/
├── manifest/
├── module_language_packs/
├── modules/
└── patch/

6.

◦

◦

apps/
├── install/
└── upgrade/

158 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

Copy Module Suite artifacts

Copy the first module suite artifact anscontentscript_X_Y_Z_GA.tar.gz

in the modules folder. Do NOT expand the artifact archives.

Build the container¶

Open a command shell, navigate to the main folder (i.e. MSInitContainer) and build the Init

Containers by executing commands below:

where a.b.c is the version of the Alpine Linux image, module is the name of the artifact

for which you are creating the init container, x.y.z is the version of the Module Suite

module and t is the version of the Init container. E.g.

Check your work

Your final folder structure should look like this:



MSInitContainer/
└── Init/
├── Dockerfile_init
└── extensions/
├── apps/
│ ├── install/
│ └── upgrade/
├── language_packs/
├── manifest/
├── module_language_packs/
├── modules/
└── patch/

1.

▪

Only one artifact at a time

Important do not add more than a module at a time because we are going to build separate Init Containers

for each one of them

1.

docker build -f Dockerfile_init . --build-arg base_image_tag=a.b.c --tag anscontentscript:x.y.z.t

docker build -f Dockerfile_init . --build-arg base_image_tag=a.b.c --tag anscontentsmartui:x.y.z.t

docker build -f Dockerfile_init . --build-arg base_image_tag=a.b.c --tag ansbwebform:x.y.z.t

docker build -f Dockerfile_init . --build-arg base_image_tag=3.6.0 --tag anscontentscript:3.7.0.1

Follow the building process execution

159 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

Push the Init Containers to your image repository¶

Once built, the init container you can push them to your image repository, assuming you are

using Dockerhub you can proceed as follows:

Tag the init container with the Dockerhub account, owner, of the repository:

e.g.

Push the init container to the external image repository as follows:

e.g.

You can follow the building process using the command shell, where messages are constantly updated. if

terminated successfully you should readm a message similar to the one below

Successfully built <Image_ID>
Successfully tagged <Image_Name>:<Tag_Name>

1.

docker tag anscontentscript:x.y.z.t dockerhubuser/anscontentscript:x.y.z.t
docker tag ansbwebform:x.y.z.t dockerhubuser/ansbwebform:x.y.z.t
docker tag anscontentsmartui:x.y.z.t dockerhubuser/anscontentsmartui:x.y.z.t

docker tag anscontentscript:3.7.0.1 dockerhubuser/anscontentscript:3.7.0.1
docker tag ansbwebform:3.7.0.1 dockerhubuser/ansbwebform:3.7.0.1
docker tag anscontentsmartui:3.7.0.1 dockerhubuser/anscontentsmartui:3.7.0.1

1.

docker push dockerhubuser/anscontentscript:x.y.z.t
docker push dockerhubuser/ansbwebform:x.y.z.t
docker push dockerhubuser/anscontentsmartui:x.y.z.t

docker push dockerhubuser/anscontentscript:3.7.0.1
docker push dockerhubuser/ansbwebform:3.7.0.1
docker push dockerhubuser/anscontentsmartui:3.7.0.1

Follow the process execution

You can follow the process using the command shell, where messages are constantly updated. If terminated

successfully you should readm a message similar to the one below

The push refers to repository \[[_docker.io/dockeruser/anscontentscript_](http://docker.io/msdckruser/anscontentscript)_\]_

e6bed7bffb32: Pushed

8be46d384520: Pushed

24302eb7d908: Pushed

160 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

Deploy¶

Enable extensions in Helm deployment¶

When deploying OpenText Extended ECM, include this Helm command argument:

Specify Init container details¶

For each Init container (including any manifest container), add the following Helm

command arguments:

Replace [n] with an incrementing number for each Init container, starting from 0.

E.g.

3.7.0.1: digest: sha256:33dc6c3810b0e5a72cfa7fc98fd1f4780fe3aaac320bc715c8a4233 size: 949

•

--set otcs.config.extensions.enabled=true

•

--set otcs.initContainers[n].name=<Init_Container_Image_Name>
--set otcs.initContainers[n].image.source=<Image_Source>
--set otcs.initContainers[n].image.name=<Image_Name>
--set otcs.initContainers[n].image.tag=<Image_Tag>

Parameter Details

<Init_Container_Image_Name>: A name of your choice for the Init container.

<Image_Source>: The registry containing your images. Include this even if it's the same as in the

<platform>.yaml file.

<Image_Name>: The name you set in your docker build command.

<Image_Tag>: The tag you set in your docker build command.

•

•

•

•

helm install myotxecm otxecm -f otxecm/platforms/gcp.yaml
--set otds.otdsws.cryptKey=MTIzNDU2Nzg5YWNiZGVmZw==
--set otcs.config.extensions.enabled=true
--set otcs.initContainers[0].name=anscontentscript
--set otcs.initContainers[0].image.source=docker.io
--set otcs.initContainers[0].image.name=dockerUser/anscontentscript
--set otcs.initContainers[0].image.tag=3.7.0.1
--set otcs.initContainers[1].name=ansbwebform
--set otcs.initContainers[1].image.source=docker.io
--set otcs.initContainers[1].image.name=dockerUser/ansbwebform
--set otcs.initContainers[1].image.tag=3.7.0.1
--set otcs.initContainers[2].name=anssmartui
--set otcs.initContainers[2].image.source=docker.io
--set otcs.initContainers[2].image.name=dockerUser/anssmartui
--set otcs.initContainers[2].image.tag=3.7.0.1

161 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

(Optional) Activate the Module Suite

The activation of the Module Suite can be performed when the containers are deployed.

Add the administration settings file to the Helm chart Place an Administration Settings file named

adminSettings.xml (containing the ModuleSuite activation key) in the ../otxecm/charts/otcs folder.

Enable the use of an administration settings file Include the Helm command argument

1.

2.

--set otcs.loadAdminSettings.enabled=true

162 Install Module Suite on OpenText Extended ECM CE¶

Copyright © 2013-2025 AnswerModules Sagl

Upgrading Module Suite

upgrade

Getting ready to upgrade Module Suite¶

Whenever a new release of Module Suite is released, it is highly recommended for customers

to update their installation. New releases not only contains fixes for the identified bugs, but

most importantly new features that might open new usage scenarios for your Module Suite

applications. Updating Module Suite is quite a straight forward procedure, that should take

between 15 to 45 minutes (depending on how complex your Content Server architecture is). The

system down time is limited to the two restarts required for each node.

Overview of the Module Suite upgrade process¶

This guide describes the step-by-step procedure that will lead to upgrading your Module Suite

installation on a Content Server environment.

The upgrade procedure reflects most of the same steps that are performed upon initial

installation.

Depending on the characteristics of the target environment (Unix/Linux or Windows, single

server or clustered, ...) different options might be provided for each installation phase.

The following high-level phases will be covered:

Deployment

This phase covers the deployment of the software binaries on the target system. The

related operations will be typically performed with a click-through installer.

Module Upgrade

This phase covers the "upgrade" phase of the updated Modules within the target Content

Server system. The operation is performed through the standard OpenText Content

Server Administration tools.

Activation

This phase covers the available procedures to apply the required software keys and

activate the Module Suite software. The operations are performed using AnswerModules

Administration tools available within the Content Server Admin pages and standard

OpenText Content Server Administration tools.

1.

2.

3.

163 Upgrading Module Suite

Copyright © 2013-2025 AnswerModules Sagl

Configuration

This phase covers the minimum set of post-installation configuration steps that are

necessary to get the software up and running. This includes importing or updating

certain core libraries and components in the system, as well as resolving conflicts with

previously installed versions. The operations are performed using AnswerModules

Administration tools available within the Content Server Admin pages.

Prerequisites¶

This guide assumes certain resources to be readily available while performing the installation.

Please ensure the following have been provisioned before starting the installation process:

4.

Upgrading on a Clustered Environment

When upgrading a Module Suite installation on a clustered Content Server environment, the overall procedure will

vary.

In a clustered environment it is mandatory to install the Module Suite components on all nodes, but it is important

to notice that the single installation steps must not be performed on each single node separately, as certain

operations already affect the whole cluster.

At a high level, the suggested procedure is to perform a complete the upgrade procedure on the primary node of

the cluster, and then reconcile the remaining nodes.

Please refer to the Upgrading of a clustered environment guide for detailed info.

Upgrading Script Console

Script Console can be upgraded performing a so-called "parallel" upgrade, which means installing on the same/

different server the newer version of the console and configure it as the previous one.

This typically requires to copy over the relevant configuration files from the previous Script Console together with

any custom script you might have created/deployed on the console: %SCHOME%/config/cs-console-

schedulerConfiguration.xml, %SCHOME%/config/cs-console-security.xml %SCHOME%/config/cs-console-

systemConfiguration.xml

 Admin-level access to the servers on which the software will be installed

 Admin user access to the Content Server instance.

 The Module Suite installers or installation packages compatible with the target

environment


Installer versions

Before proceeding with the installation, make sure that the installer version matches the OpenText Content

Server target system version.

E.g.:

module-suite-2.7.0-OTCS162.exe is the Windows installer for OpenText Content Server 16.2.X;



◦

164 Getting ready to upgrade Module Suite¶

Copyright © 2013-2025 AnswerModules Sagl

../clustered_upgrade/

module-suite-2.6.0-OTCS162.exe is the Windows installer for OpenText Content Server 16.2.X;

module-suite-2.5.0-OTCS162.exe is the Windows installer for OpenText Content Server 16.2.X;

module-suite-2.4.0-OTCS16.exe is the Windows installer for OpenText Content Server 16.0.X;

module-amcontentscript-2.3.0-OTCS105.exe is the Windows installer for OpenText Content Server

10.5.X;

module-amcontentscript-2.2.0-OTCS10.exe is the Windows installer for OpenText Content Server

10.0.X;

Note: Starting with version 3.2.0, the OTCS identifier (OTCS10, OTCS105, OTCS162 ...) is no longer present in the

installer names.

◦

◦

◦

◦

◦

 A valid AnswerModules activation key, either in plain text format or in OTCS

Configuration Export XML format. The latter is the suggested option as it will prevent

errors due to manual input.



Activation keys must match Module Suite version

Module Suite activation keys are specific to a target software version. i.e. An Activation key intended for

Module Suite version 3.1 will not be valid on Module Suite version 3.2



Keys and System Fingerprint

An activation key is only required starting from version 1.7.0 of the Module Suite.

Starting from version 2.0.0 activation keys are bound to the system’s fingerprint.



◦

◦

How do I get an activation key?

In order to activate Module Suite you need a valid activation key. Activation keys can be requested to

AnswerModules Support (https://support.answermodules.com) by providing the OpenText Content Server

System Fingerprint.

You can read your's environment fingerprint from the OpenText Admin Pages as shown below



165 Getting ready to upgrade Module Suite¶

Copyright © 2013-2025 AnswerModules Sagl

https://support.answermodules.com
https://support.answermodules.com

upgrade

Upgrading Module Suite¶

This guide covers the step-by-step procedure to perform an upgrade of a Module Suite

installation.

 Any relevant hotfixes released for the Module Suite version being installed 

Hotfixes

Hotfixes and patches are continuously published on the AnswerModules Support Portal. Check the

availability of applicable patches when starting a new installation.

E.g. https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-

server-16 (https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-

server-16)



Next Steps

Once all the prerequisites are met, please proceed to the Upgrade guide:

Check prerequisites

166 Upgrading Module Suite¶

Copyright © 2013-2025 AnswerModules Sagl

https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-server-16
https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-server-16
https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-server-16
https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-server-16
https://support.answermodules.com/portal/kb/articles/2-2-0-patches-and-hotfixes-for-content-server-16
../upgrade/

Deploy the new Modules on the target system¶

During this phase, the updated Module binaries will be deployed on the target system. The

steps to perform for the deployment are exactly the same as the ones covered during a clean

installation. Depending on the target platform, refer to one of the following resources:

if you are installing on a Windows environment: Deploy on Windows

if you are installing on a Unix/Linux environment: Deploy on Unix/Linux

Perform the Module upgrade¶

This phase is roughly equivalent to the Module installation phase performed upon initial

Module Suite installation. The difference is that the system will already include an older

version of the Modules, which will have to be replaced.

In order to proceed with the upgrade of the modules, please follow these steps:

The guide assumes that the prerequisites to perform the upgrade operation are met. If that is not the case, please

go back to the Upgrade overview.

•

•

 Start the Content Server services

 Login as Administrator and access the Module administration panel

 Access the Content Server Admin pages > Core System - Module Configuration > Upgrade

Modules


 From the available modules, select “AnswerModules Content Script x.y.z”

 Follow the installation steps and restart Content Server when prompted.

 Access the Content Server Admin pages > Core System - Module Configuration > Upgrade

Modules


 From the available modules, select “Answer Modules - Beautiful Web Forms x.y.z”

 Follow the installation steps and restart Content Server when prompted.

 Access the Content Server Admin pages > Core System - Module Configuration > Upgrade

Modules


 From the available modules, select “Answer Modules - Smart Pages x.y.z”

 Follow the installation steps and restart Content Server when prompted.

 At this point, the upgraded Modules have been installed in the Content Server system

and have replaced the older versions.


167 Upgrading Module Suite¶

Copyright © 2013-2025 AnswerModules Sagl

../getstarted/
../../modulesuite/deploy_windows/
../../modulesuite/deploy_unix/

Apply the available hotfixes¶

Activate the software¶

If you plan to apply the license key manually, please proceed to Activation through

manual key setup.

Alternatively, if you plan to import the licensing configuration settings, please proceed to

the Activation through key import.

Upgrading from Versions Below 3.2¶

Step-by-Step Renaming Process¶

Locate the Content Script Volume: Navigate to your Content Script Volume in the system.

Find the CSSystem: Identify the CSSystem within the Content Script Volume.

Perform the Rename: Change the name from CSSystem to CSystem.

Verify the Change: Double-check that the rename operation was successful.

Update the Module Suite Configuration¶

Using the Content Script Volume Import Tool, check for the presence of updates or conflicts in

the System library.

 Stop Content Server

 Apply relevant hot fixes

 Start Content Server

 Activate the software by applying the new software activation key. Depending on the

format in which the key was provided, you can use one of the following approaches:


•

•

Critical Upgrade Step

If you are upgrading from a version below 3.2, it is crucial to perform the following step before importing the new

libraries:

Rename CSSystem to _CSSystem_ in the Content Script Volume.

1.

2.

3.

4.

 As the system Admin user, open the Content Server Administration pages.

168 Upgrading Module Suite¶

Copyright © 2013-2025 AnswerModules Sagl

../../modulesuite/activate_manual/
../../modulesuite/activate_manual/
../../modulesuite/activate_import/
../../../administration/csvolume_import_tool/

 Locate the AnswerModules Administration section. Within this section, open the Content

Script Volume Import tool.


 Within the Content Script Volume Import page, locate the Library Update section (it can

be found at the very top of the page).

Click the Import button.



What if the Library Update section is not present?

The Library Update section at the top of the import tool will only show up if there are updates to be

applied to the System libraries.

If none are present, this section will not be found and the step can be skipped.



 Wait for the import operation to complete.

 Once the operation is complete, a success message will be shown.

169 Upgrading Module Suite¶

Copyright © 2013-2025 AnswerModules Sagl

Upon refreshing the page, the Library Update section will no longer be visible. This

indicates that all relevant libraries have been imported.

 Within the Content Script Volume Import page, locate the Volume's Conflicts Resolution

section. The section may take some time to process the status of the Volume. In this

case, it will show as loading.



 Check for any outstanding conflicts and optional updates and update as needed.

Refer to the Content Script Volume Import Tool for further details on conflicts and

conflict resolution.



Custom changes to library components

In case any of the standard components were customized, patched or otherwise modified, or new custom

components were added within the standard library, make sure that you transfer any relevant changes to

the new libraries before deleting the old version.



What do I need to upgrade ?

How the library upgrade works¶

The 'Upgrade' operation will rename the existing library folders in the Content Script volume, and import a

new version of the same (the only exception is the 'CSFormTemplates' folder, which will be discussed later).

As such, any modification that has been applied to one of the libraries will be relocated and no longer

available.



170 Upgrading Module Suite¶

Copyright © 2013-2025 AnswerModules Sagl

../../../administration/csvolume_import_tool/

clustered installation installation upgrade

Upgrading Module Suite on a clustered
environment¶

In a Content Server clustered environment, it is mandatory to install Module Suite modules on

each node that makes up the cluster.

The installation process in a cluster is more complex than installing on a single server, as a

slightly different procedure must be performed on each remaining node in the cluster after

installing the modules on the first one. The recommended approach is to install Module Suite

on a primary node (the node on which the primary OpenText Admin Content Server services

are installed and configured) and then copy the installed modules to each other node

(secondary nodes) in the cluster. This approach ensures that all installed modules are identical

and that the patch level on all nodes is the same.

Examples include:

any custom Beautiful WebForms components added to the CSFormSnippets folder

any custom Rest API endpoints added to the CSServices folders

any callbacks configured in the CSEvents or CSSynchEvents folders

any Classic UI modifications applied through the CSMenu, CSAddItems, CSBrowseView,

CSBrowseViewColumns

any other object created or modified within one of the upgraded folders

As part of the upgrade operation, you should identify such changes and make sure they are ported to the

new libraries.

CSFormTemplates have a slightly different upgrade process. Since objects in this folder are referenced by

object DataID (their unique identifier on OTCS)they can't be replaced with the updated version, since this

would potentially cause issues in any existing form using the template. For this reason, the upgrade process

for CSFormTemplates automatically updates each single template by adding a new version to the object,

thus preserving the original DataID. For this reason, no "backup" folder will be found for CSFormTemplates..

◦

◦

◦

◦

◦

 Cleanup. The folders named “Backup-_yyyyMMdd-AAAAAA” are backup folders containing

the previously installed library scripts/snippets. They can be safely exported and

removed



We will refer to the Content Server installation directory as %OTCS_HOME%.

171 Upgrading Module Suite on a clustered environment¶

Copyright © 2013-2025 AnswerModules Sagl

Deployment on the primary node¶

Module Suite package upgrade on a Primary node is identical to the upgrade process into the

non-clustered environment.

Deployment on the secondary node(s)¶

Once the Module Suite modules are upgraded on the primary node, the module packages can

be deployed on the remaining cluster nodes.

Proceed with the following upgrade steps on all Secondary nodes

 Stop Content Server services on all the nodes in the cluster

 Proceed with the Module Suite upgrade on the Primary node

Detailed description of this procedure can be found in Upgrading Module Suite guide.



 Make a copy of the following resources and make them available in a working folder on

the Secondary node:

%OTCS_HOME%/module/anscontentscript_x_x_x

%OTCS_HOME%/module/ansbwebform_x_x_x

%OTCS_HOME%/module/anscontentsmartui_x_x_x

%OTCS_HOME%/support/anscontentscript

%OTCS_HOME%/support/ansbwebform

%OTCS_HOME%/support/anscontentsmartui



1.

2.

3.

4.

5.

6.

Installed Modules

The actual folders to be copied depend on the Module that have been installed on the Primary node.

e.g. if you are only installing Content Script and Beautiful WebForms modules, the "anscontensmartui"

folders will not be available in the Primary node.

 On the Secondary node, ensure that all Content Server services are stopped.

 On the Secondary node, move the following folders and all their content to a backup

folder

%OTCS_HOME%/module/anscontentscript_x_x_x

%OTCS_HOME%/module/ansbwebform_x_x_x

%OTCS_HOME%/module/anscontentsmartui_x_x_x

%OTCS_HOME%/support/anscontentscript

%OTCS_HOME%/support/ansbwebform

%OTCS_HOME%/support/anscontentsmartui



1.

2.

3.

4.

5.

6.

172 Upgrading Module Suite on a clustered environment¶

Copyright © 2013-2025 AnswerModules Sagl

../getstarted/

 On the Secondary node, copy all the upgraded modules and support folders previously

identified to their corresponding target location within %OTCS_HOME%.


 On the Secondary node, proceed to manually reconcile the opentext.ini file in

%OTCS_HOME%/config.

Pay particular attention to the [Modules] and [javaserver] sections on the opentext.ini file.



 On the Secondary node, start the Content Server services.

173 Upgrading Module Suite on a clustered environment¶

Copyright © 2013-2025 AnswerModules Sagl

Other installation guides

installation

Installing Content Script¶

This guide is specific to the installation of the Content Script component of Module Suite.

In order to perform the installation of the Content Script module, you will have to follow a

similar procedure to the one described in Installing Module Suite, with the following exceptions:

Deployment Phase - Select the components to be

installed¶

When prompted to select the Module Suite components to install, only select the required

options:

Content Script

Module Suite Extension Packages (optional)

Module Suite installation

If you are interested in installing the full Module Suite, including all its components, please follow the Installing

Module Suite guide.

Reference in Module Suite installation guide

This entry refers to the following instructions: Installing Module Suite - Deploy - Step by step deployment

•

•

174 Other installation guides

Copyright © 2013-2025 AnswerModules Sagl

../modulesuite/getstarted/
../modulesuite/getstarted/
../modulesuite/getstarted/

Installation Phase - Step-by-step Installation¶

When accessing the "Install Modules" administration panel, the only available Module to

install will be "AnswerModules Content Script x.y.z".

Follow the installation steps for this module and restart when prompted.

installation

Installing Beautiful WebForms¶

This guide is specific to the installation of the Beautiful WebForms component of Module Suite.

Reference in Module Suite installation guide

This entry refers to the following instructions: Installing Module Suite - Install - Step by step installation

Module Suite installation

If you are interested in installing the full Module Suite, including all its components, please follow the Installing

Module Suite guide.

Prerequisite : Content Script

175 Installing Beautiful WebForms¶

Copyright © 2013-2025 AnswerModules Sagl

../modulesuite/getstarted/
../modulesuite/getstarted/

In order to perform the installation of the Beautiful WebForms module, you will have to follow

a similar procedure to the one described in Installing Module Suite, with the following

exceptions:

Getting Started - Prerequisites¶

The Beautiful WebForms Modules has a dependency on the Content Script engine, which is part

of the Content Script Module.

Since the Content Script Module will already be installed and configured on your system, you

will not require a separate Activation key to proceed with the standalone installation of the

Beautiful WebForms Module.

Deployment Phase - Select the components to be

installed¶

When prompted to select the Module Suite components to install, only select the required

options:

Beautiful WebForms

The Beautiful WebForms Modules has a dependency on the Content Script engine, which is part of the Content

Script Module. Content Script engine has to be installed and properly configured (including activation) in order to

proceed with the standalone installation of the Beautiful WebForms Module.

Reference in Module Suite installation guide

This entry refers to the following instructions: Installing Module Suite - Deploy - Step by step deployment

•

176 Installing Beautiful WebForms¶

Copyright © 2013-2025 AnswerModules Sagl

../modulesuite/getstarted/

Installation Phase - Step-by-step Installation¶

When accessing the "Install Modules" administration panel, the only available Module to

install will be "AnswerModules Beautiful WebForms x.y.z".

Follow the installation steps for this module and restart when prompted.

Activation Phase¶

The activation phase can be skipped when performing a standalone installation of the Beautiful

WebForms Module. Module Suite Activation is associated with the Content Script installation,

which is a prerequisite.

installation

Installing Smart Pages¶

This guide is specific to the installation of the Smart Pages component of Module Suite.

Reference in Module Suite installation guide

This entry refers to the following instructions: Installing Module Suite - Install - Step by step installation

177 Installing Smart Pages¶

Copyright © 2013-2025 AnswerModules Sagl

In order to perform the installation of the Smart Pages module, you will have to follow a

similar procedure to the one described in Installing Module Suite, with the following exceptions:

Getting Started - Prerequisites¶

The Smart Pages Modules has a dependency on the Content Script engine, which is part of the

Content Script Module.

Since the Content Script Module will already be installed and configured on your system, you

will not require a separate Activation key to proceed with the standalone installation of the

Smart Pages Module.

Deployment Phase - Select the components to be

installed¶

When prompted to select the Module Suite components to install, only select the required

options:

Smart Pages

Module Suite installation

If you are interested in installing the full Module Suite, including all its components, please follow the Installing

Module Suite guide.

Prerequisite : Content Script

The Smart Pages Modules has a dependency on the Content Script engine, which is part of the Content Script

Module. Content Script engine has to be installed and properly configured (including activation) in order to

proceed with the standalone installation of the Smart Pages Module.

Reference in Module Suite installation guide

This entry refers to the following instructions: Installing Module Suite - Deploy - Step by step deployment

•

178 Installing Smart Pages¶

Copyright © 2013-2025 AnswerModules Sagl

modulesuite/getstarted.md
modulesuite/getstarted.md
modulesuite/getstarted.md

Installation Phase - Step-by-step Installation¶

When accessing the "Install Modules" administration panel, the only available Module to

install will be "AnswerModules Smart Pages x.y.z".

Follow the installation steps for this module and restart when prompted.

Activation Phase¶

The activation phase can be skipped when performing a standalone installation of the Smart

Pages Module. Module Suite Activation is associated with the Content Script installation, which

is a prerequisite.

installation unix

Reference in Module Suite installation guide

This entry refers to the following instructions: Installing Module Suite - Install - Step by step installation

179 Installing Smart Pages¶

Copyright © 2013-2025 AnswerModules Sagl

Script Console installation guide¶

Installation procedure¶

Script Console can be configured to run in different modes. Common scenarios are:

standalone interactive console, connected to OTCS: mainly used for batch processing and

administration tasks

standalone script interpreter, connected to OTCS: mainly used for scheduling

administration tasks

standalone lightweight webserver (based on embedded application server), connected or

not connected to OTCS

web application deployed on external application server, connected or not connected to

OTCS

This guide covers the standard installation procedure of the Content Script Console

(standalone based on embedded application server) which is compliant with the options 1, 2

and 3 of the above list.

For alternative deployment scenarios, including deployment on an external application server,

please make reference to AnswerModules Support Team and guides available through Support

Portal.

JVM and Servlet API

Ensure that the Script Console runs on the same JVM version as the OpenText Content Server where the

corresponding version of the Content Script Module is installed.

For instance:

If you're installing Script Console 3.0 and you have Content Script 3.0 on OpenText Content Server 20.2, use

the identical JVM version that the OpenText Content Server environment utilizes.

When setting up the Script Console to run as a web application, note the following:

Script Console is designed for Servlet-API 3.X.

It is also compatible and can run on Servlet-API 4.x without issues.

•

•

•

1.

2.

3.

4.

 Run the Script Console Installer (WINDOWS), or extract the Script Console archive, and

install the Script Console in your favourite location (this step should be executed by an

user having local administrative privileges)



Environment variables

The Script Console requires an environment variable to be defined in order to work properly, for your convenience

this variable is automatically defined on windows server by the Script Console installer:

AM_CONSOLE_DATA: the Script Console's root folder•

180 Script Console installation guide¶

Copyright © 2013-2025 AnswerModules Sagl

Step-by-Step procedure

The following screens will guide you through the deployment of Script Console runtime.

Welcome Screen: Select “Next” when ready to start the installation.

EULA Screen: Acceptance of the end-user license agreement is mandatory for proceeding with the

installation

A copy of the agreement will be available, upon installation, in:

%AM_CONSOLE_DATA%/license/EULA Select “Next” when ready.



1.

2.

181 Script Console installation guide¶

Copyright © 2013-2025 AnswerModules Sagl

AM_CONSOLE_DATA selection: Choose the location where the Script Console components will be installed.

E.g.

E:\AM\SC_2_7_0\

Script Console Application and Content Script Extension Packages: there are two different types of

extensions that can be installed:

Content Script Extensions are extensions for the embedded Content Script Engine.

3.

4.

5.

182 Script Console installation guide¶

Copyright © 2013-2025 AnswerModules Sagl

Script Console Applications

 11. Installation

completed: Select “Finish” and return to the installation checklist to finalize the module setup.

6.

 Copy Content Server's libraries to the Script Console runtime

183 Script Console installation guide¶

Copyright © 2013-2025 AnswerModules Sagl

Content Server libraries required

Some Content Script extension packages require additional Java libraries that are specific to the target Content

Server environment, and are not distributed with the module. The required library files are:

csapi.jar

service-api-X.X.XX.jar

and can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cws.war

classificationsservice-api-X.X.XX.jar

which can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cs-services-classifications.war

physicalobjectsservice-api-X.X.XX.jar

which can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cs-services-physicalobjects.war

recordsmanagementservice-api-X.X.XX.jar

which can be found in the web app located in:

%OTCS_HOME%\\webservices\\java\\webapps\\cs-services-recordsmanagement.war

oml.jar

which can be found in: %OTCS_HOME%\\ojlib

To retrieve the files:

copy the file named XXX.war to a temporary folder

rename the file XXX.war in XXX.zip

extract the zip archive contents locate the files in the WEB-INF/lib folder

Once the files have been located, copy them to the folder: %AM_CONSOLE_DATA%/runtime/amlib

•

•

•

•

•

•

•

•

•

Copy libraries form Content Script

All the libraries mentioned above but ** oml.jar ** are usually also found in the installation folder of the

Content Script module: %OTCS_HOME/module/anscontentscript_X_Y_Z/amlib

 Perform basic configuration of the Script Console. The main configuration file is located

in: %AM_CONSOLE_DATA%/config/cs-console-systemConfiguration.xml

Default configuration will be similar to the following:



<config>
<systems>

<system id="TEST">
<name>Content Server TEST Environment</name>
<serverHost>localhost</serverHost>
<serverPort>2099</serverPort> <!-- OTCS API port if operating as connected -->
<!-- <OTHome>/opt/am/sc/</OTHome> Script Console Home folder. -->

184 Script Console installation guide¶

Copyright © 2013-2025 AnswerModules Sagl

The base configuration allows to specify one or more “system” objects which represent

OTCS instances to which the console will be able to connect.

<local-repository-home>TEST</local-repository-home>
<local-repository-encoding>UTF-8</local-repository-encoding>
<otcs-repository-encoding>UTF-8</otcs-repository-encoding>
<systemVars>

<systemVar name="img">/csconsoleimg/</systemVar><!-- Base path for static contents (default: '/') -->
<systemVar name="url">/csconsole</systemVar><!-- Base path for scripts contents (default: '') -->
<systemVar name="csModulePath"></systemVar><!-- Base path for runtime contents (default: 'runtime installation path') -->
<systemVar name="clientIPAddress"></systemVar><!-- Actual IP Address to be used to generate -->

</systemVars>
<serviceVars>

<serviceVar service="core" name="amcs.core.httpProxyHostname" ></serviceVar>
<serviceVar service="core" name="amcs.core.httpProxyPort">80</serviceVar>
<serviceVar service="core" name="amcs.core.httpProxyUsername"></serviceVar>
<serviceVar service="core" name="amcs.core.httpProxyPassword"></serviceVar>
<serviceVar service="core" name="amcs.core.httpMaxConnPerRoute">20</serviceVar>
<serviceVar service="core" name="amcs.core.httpMaxConnTotal">50</serviceVar>
<serviceVar service="core" name="amcs.core.httpOTCSSchema">http</serviceVar>
<serviceVar service="core" name="amcs.core.tempFilePath">/tmp/</serviceVar>
<serviceVar service="dbx" name="amcs.dbx.activeProfiles">default</serviceVar>
<serviceVar service="dbx" name="amcs.dbx.cacheClients">false</serviceVar>
<serviceVar service="dbx" name="amcs.dbx.appKey.default"></serviceVar>
<serviceVar service="dbx" name="amcs.dbx.appSecret.default"></serviceVar>
<serviceVar service="dbx" name="amcs.dbx.authToken.default"></serviceVar>
<serviceVar name="ans.appbuilder.requestContext" service="appbuilder">/otcs/cs.exe</serviceVar>
<serviceVar name="ans.appbuilder.supportContext" service="appbuilder">/img/</serviceVar>
<serviceVar name="ans.appbuilder.httpOTCSSchema" service="appbuilder">http</serviceVar>

</serviceVars>
<users>

<user password="B594193ED65B934A5D11E5DE2323131E8C70" username="Admin"/>
</users>

</system>
</systems>
<extensions id="forms">

<repositories>
<repository commands="false" encoding="UTF-8" home="forms" root="scripts/ext" server="true"/>

</repositories>
</extensions>

</config>

How to setup your base configuration

The base configuration can be edited manually, or, alternatively, configuration parameters can be downloaded from

a target Content Server instance. This feature comes particularly handy for installations that include multiple

Content Script Extension Packages, each with its own configuration settings.

 Apply any available hotfix(es)

Hot to install a hotfix

Before you install any hotfix, please backup all essential files. To install the hotfix, download the hotfix from the

Support portal and save it to a temporary location. Make sure Script Console services (or executable) are

completely stopped. From the temporary location, extract the contents of the hotfix to the <Script_Console_home>

directory and then restart it.

The directory (directories) and file(s) contained in the hotfix(es) you install will be copied to <Script_Console_home>

Please always make reference to the hotfix's description file:/hotfixes/hotFix_ANS_XXX_YYY_ZZZ.hfx for specific

installation instructions or pre/post installation procedures

185 Script Console installation guide¶

Copyright © 2013-2025 AnswerModules Sagl

Configure Script Console¶

To perform configuration against an OTCS instance, run the Script Console in shell mode. To do

so, open a Windows Commands Processor and move to the folder: %AM_CONSOLE_DATA%/

runtime/bin which includes the Script Console's executables scripts

Run the app-windows.bat or app.sh script

The following prompt should appear:

The default TEST system is selected. To list all available systems, use the system

command with the list flag (-l, --list). E.g. system -l:

•

•

Unix 

•

186 Script Console installation guide¶

Copyright © 2013-2025 AnswerModules Sagl

To create a new system (for example, LOCAL) use the system command with the add flag

(-a, --add) followed by the ID of the new system. E.g. system -a LOCAL

The shell will prompt for the required base values, such as hostname and port number.

Unix 

•

Unix 

187 Script Console installation guide¶

Copyright © 2013-2025 AnswerModules Sagl

Switch the active system to LOCAL using the system command with the system flag (-s)

followed by the ID of the target system. E.g. system -s LOCAL

Upon creating a new system, the Script Console will require a restart and will automatically shutdown.

•

Unix 

188 Script Console installation guide¶

Copyright © 2013-2025 AnswerModules Sagl

The active system indicator in the command prompt should now indicate LOCAL.

Synchronize ModuleSuite configuration parameters from the LOCAL system using the

loadConfig command. To do this, you must first export the entire Module Suite

configuration from the Content Server instance by following these steps:

The configuration is complete. Try a simple ls command to test the console

•

 Go to the Administration page of the Content Server and under Core System -

Feature Configuration click on Import and Export Administration Settings


 Open Export Administration Settings
 In this page, add the Setting_AnswerModules_BaseConfiguration to the Selected

Settings list, flag Lean Versions (as showed in the screenshot below) and click on

Export to export the XML file containing the Module Suite configuration.



 Copy eh file generated at the previous step on the server where Script Console is

installed under the path %AM_CONSOLE_DATA%/runtime/bin


 Run the command loadConfig specifying the file to be imported (-f, --file)

•

Connect to Content Server

Script Console does not require to be connected to a Content Server instance, in fact in most cases the two

systems do not need to be connected. To execute actions and scripts against an active Content Server instance, you

must log-in using valid user credentials.

Unix 

189 Script Console installation guide¶

Copyright © 2013-2025 AnswerModules Sagl

Login to the LOCAL system using the login command

The active system indicator in the command prompt should now turn green to indicate that the

system is ONLINE

Installing Module Suite Extension Packages¶

Installation procedure¶

We will refer to the Content Server installation directory as %OTCS_HOME%

Run the Module Suite Content Script Master Installer and install the desired extension

packages.

•

Unix 

•

Step-by-step procedure 

190 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

The following screens will guide you through the Content Script Module Master Installer steps required to install

optional extension packages:

Welcome Screen: Select “Next” when ready to start the installation.

EULA Screen: Acceptance of the end-user license agreement is mandatory to proceed with the installation

A copy of the agreement will be available, upon installation, in:

%OTCS_HOME%/module/amcontentscript_X_Y_Z/license/EULA Accepting the End User Agreement is

mandatory to proceed with the installation.

Select “Next” when ready.

1.

2.

191 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

Components selection:Unselect the OTCS Module component. Select all of the extension components that

are to be installed

Select “Install” when ready.

3.

192 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

Installation: The extension packages are automatically installed.

Select “Next” when the procedure is complete.

4.

Configure the Extension Packages

If you are installing extension packages on an already installed and properly configured Module Suite instance you

have to update the module's Base Configuration following the procedure below:

Stop and Start Content Server service to let the system load the newly installed Extension Packages

Login as Administrator and access the Module administration panel

From the Administration Home, select AnswerModules Administration > Base Configuration

If necessary, change the core configuration or the configuration of the extension modules.

Save the Base Configuration (even in case no changes were applied), and restart the OTCS services if

prompted.

•

•

•

•

•

Since Module Suite version 3.2.0, updating the Base Configuration settings will only require a service restart for a

limited number of options.

This is clearly marked in the Base Configuration UI and/or the documentation specific for the configuration setting.

Please note that whenever a restart is required as a consequence of the config change, the system will prompt to

do so.

193 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

Rendition Extension Package¶

What is it?¶

The rendition extension package allows you to programmatically invoke a third party rendition

engine to convert documents from one format to another, the most common use case is to

convert HTML documents to PDF documents. Using the rendition extension package, you will be

able to convert documents in real time and without interrupting the script execution flow.

The installation procedure for the rendition extension package isn't different from any other

extension package, although it requires a couple of additional steps to be completed.

Install the third party rendition engine¶

The CS Rendition Extension package only provides the API to interface with a third party engine

capable of converting documents.

This software is distributed separately by the third party and has to installed separately.

Although potentially compatible with different engines, the rendition extension package is pre-

configured and tested to use on of the following options:

an open engine AnswerModules R&D Team derived from the open source project

Puppeteer (https://github.com/puppeteer/puppeteer) named rend

an open source engine named wkhtmltopdf (https://wkhtmltopdf.org/) (deprecated)

The installation and configuration of the two above mentioned solutions is pretty similar.

rend¶

Installation (Windows)¶

External conversion engine package is provided as a compressed archive rend-win.zip. The

Archive contains following items:

chromium – folder containing an up to date version of Chromium (https://

www.chromium.org/Home) engine.

rend – pre-built NodeJS application leveraging Puppeteer (https://github.com/puppeteer/

puppeteer)

To install it:

•

•

•

•

 Extract the conversion engine package in the following location: 

194 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://wkhtmltopdf.org/
https://wkhtmltopdf.org/
https://www.chromium.org/Home
https://www.chromium.org/Home
https://www.chromium.org/Home
https://www.chromium.org/Home
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer

Installation (Unix)¶

External conversion engine package is provided as a compressed archive rend.tar.gz. The

Archive contains following items:

chromium – folder containing an up to date version of Chromium (https://

www.chromium.org/Home) engine.

rend – pre-built NodeJS application leveraging Puppeteer (https://github.com/puppeteer/

puppeteer)

run_rend – a script that will be called by the Content Suite and will launch the

application

To install it:

Configuration¶

<OTCS_HOME>/module/anscontentscript_x_x_x/amlib/rend/dropin

•

•

•

 Extract the conversion engine package in the following location:

Note: files inside dropin folder should belong to user that is used to run Content Server

service. Thus you can either perform extraction under the OTCS service user or change

ownership of the extracted files accordingly.



<OTCS_HOME>/module/anscontentscript_x_x_x/amlib/rend/dropin

e.g.
>tar -C <OTHOME>/module/anscontentscript_x_y_0/amlib/rend/dropin -xvf rend.tar.gz

 Configure the Rendition extension package in order to use the rend executable in the

Module Suite Base Configuration (/administration/modulesuite/#base-configuration)

Section rend

Windows

Configuration Property Configuration Property Value

amcs.rend.html2pdf.dropin rend-win

amcs.rend.html2pdf.cmdline

"${source}" --cookie "${cookie}" -p "${destination}" --

format A4 --marginBottom 100px --marginTop 120px --

marginLeft 30px --marginRight 30px --scale 0.8 --

viewport 1240x1754

amcs.rend.html2pdf.timeout 60000

Unix



195 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

https://www.chromium.org/Home
https://www.chromium.org/Home
https://www.chromium.org/Home
https://www.chromium.org/Home
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration

Configuration Property Configuration Property Value

amcs.rend.html2pdf.dropin run_rend

amcs.rend.html2pdf.cmdline

"${source}" --cookie "${cookie}" -p "${destination}" --

format A4 --marginBottom 100px --marginTop 120px --

marginLeft 30px --marginRight 30px --scale 0.8 --

viewport 1240x1754

amcs.rend.html2pdf.timeout 60000

Configuration Property Configuration Proerty Meaning

amcs.rend.html2pdf.dropin

The relative path to the engine's executable. For security

reasons, the root of this path is the extension package's

dropin folder.

amcs.rend.html2pdf.cmdline

The template of the command line instruction to be

used when performing rendition (**). A few replacement

tags can be used in this command line template. (a) $

{source} : represent the absolute path for the input

resource you want to render. Its value is automatically

injected by the rendition extension package. Since the

rendition extension package works on Content Script

Resources, you do not have to worry about file system

housekeeping. (b) ${destination} :represent the absolute

path for the output resource, the engine is going to

generate. Its value is automatically injected by the

rendition extension package. Since the rendition

extension package works on Content Script Resources,

you do not have to worry about file system

housekeeping. c ${cookie} : represent a local

authentication cookie

amcs.rend.html2pdf.timeout
the default maximum wait time, in milliseconds, after

which a rendition attempt will be aborted.

Dropin options

-“${source}” – replacement tag that will be substituted by the URL to the generated HTML Form. This

argument is mandatory and not editable.

-ck, --cookie [cookie] – value will be replaced by replacement tag that corresponds to the current user’s

session cookie. Should be in form “Name Value”. This argument is mandatory and not editable.

-p, --path \<path> – identifies target PDF file location. Value will be substituted by the replacement tag. This

argument is mandatory and not editable.

-f, --format [format] – PDF option. Paper format. If set, takes priority over width or height options. Defaults

to 'Letter'. Available options: Letter, Legal, Tabloid, Ledger, A[0-6].



196 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

wkhtmltopdf (Deprecated)¶

Installation¶

-d – Debug is on. If specified debugging information is written to the log file. Use only for debugging

purposes. Log file located in \<OTHOME>\logs\cs_rend.log or when running application manually in

\<appDir>\log\cs_rend.log

-mb, --marginBottom [margin] - Bottom margin, accepts values labeled with units.

-mt, --marginTop [margin] - Top margin, accepts values labeled with units.

-mr, --marginRight [margin] - Right margin, accepts values labeled with units.

-ml, --marginLeft [margin] - Left margin, accepts values labeled with units.

-vp, --viewport [cookie] - PDF option. Set the viewport. Width and height of the page in pixels

-prt, --printmediatype - Use print media type. Boolean. Default: true.

-s, --scale [scale] - Scale of the webpage rendering.

-dhf, --displayHeaderFooter - Display header and footer. Boolean. Default: false.

-ht, --headerTemplate [template] - HTML template for the print header.

-ft, --footerTemplate [template] - HTML template for the print footer.

-pb, --printBackground - Print background graphics. Boolean. Default: true.

-pr, --pageRanges - Paper ranges to print, e.g., '1-5, 8, 11-13'. Defaults to the empty string, which means print

all pages.

-w, --width [width] - Paper width, accepts values labeled with units.

-h, --height [height] - Paper height, accepts values labeled with units.

-wu, --waitUntil [choice] - WaitUntil accepts choices load, domcontentloaded, networkidle0, networkidle2.

Defaults to 'networkidle2'.

For more detailed description of the option please refer to official Puppeteer documentation (https://

pptr.dev/#?product=Puppeteer&version=v3.0.1&show=api-class-page)

Deprecation Notice: wkhtmltopdf

The usage of wkhtmltopdf has been deprecated in Module Suite 3.0.0.

Recommended Migration

We strongly encourage customers to migrate to the rend package for PDF rendering.

 Follow the software developers instructions to perform the installation on each server in

the OTCS cluster on which the extension is needed.


197 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

https://pptr.dev/#?product=Puppeteer&version=v3.0.1&show=api-class-page
https://pptr.dev/#?product=Puppeteer&version=v3.0.1&show=api-class-page
https://pptr.dev/#?product=Puppeteer&version=v3.0.1&show=api-class-page
https://pptr.dev/#?product=Puppeteer&version=v3.0.1&show=api-class-page

Configuration¶

 Upon a successful installation, the main executable has to be made available to the

Content Script Extension Package as a dropin.

To do so:

locate the wkhtmltopdf installation path

locate the wkhtmltopdf.exe executable in the folder

copy the wkhtmltopdf.exe in the CS Rendition Extension package dropin folder,

located in:



◦

◦

◦

<OTCS_HOME>/module/anscontentscript_x_x_x/amlib/rend/dropin

 Configure the Rendition extension package in order to use the wkhtmltopdf executable

in the Module Suite Base Configuration (/administration/modulesuite/#base-

configuration)

Section rend

Configuration Property Configuration Property Value

amcs.rend.html2pdf.dropin wkhtmltopdf

amcs.rend.html2pdf.cmdline

-B 10 -T 10 -L 5 -R 5 --viewport-size 1920x1080 ${source}

--print-media-type --cookie ${cookie} --run-script

"am_printFix()" ${destination}

amcs.rend.html2pdf.timeout 60000

Configuration Property Configuration Proerty Meaning

amcs.rend.html2pdf.dropin

The relative path to the engine's executable. For security

reasons, the root of this path is the extension package's

dropin folder.

amcs.rend.html2pdf.cmdline

The template of the command line instruction to be

used when performing rendition (**). A few replacement

tags can be used in this command line template. (a) $

{source} : represent the absolute path for the input

resource you want to render. Its value is automatically

injected by the rendition extension package. Since the

rendition extension package works on Content Script

Resources, you do not have to worry about file system

housekeeping. (b) ${destination} :represent the absolute

path for the output resource, the engine is going to

generate. Its value is automatically injected by the

rendition extension package. Since the rendition



198 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration

Content Script Extension for SAP¶

What is it?¶

Content Script Extensions for SAP allows to integrate Content Script with the SAP™ ERP

through RFCs (Remote Functions Calls).

The integration allows you to perform the following:

connect to multiple SAP™ systems through JCo APIs;

invoke standard and custom SAP™ functions for retrieving ERP's information;

invoke standard and custom SAP functions for updating ERP's information;

Extension setup¶

The Content Scripting extension for SAP is part of the Module Suite bundle.

Below is the step by step guide on how to install the Extensions for SAP. Note: For the general

Module Suite and Module Suite Extensions Packages installation procedure please refer to

"Installing the suite" (/installation/installation/) section

Configuration Property Configuration Proerty Meaning

extension package works on Content Script Resources,

you do not have to worry about file system

housekeeping. c ${cookie} : represent a local

authentication cookie

amcs.rend.html2pdf.timeout
the default maximum wait time, in milliseconds, after

which a rendition attempt will be aborted.

(**)

Please refer to the third-party rendition engine's guide for a detailed explanation of all the available command line

parameters

•

•

•

SAP™ JCo Library Required

This extension package requires the SAP™ JCo library (https://support.sap.com/en/product/connectors/JCo.html) to

be available in the extension repository <OTHOME>/module/anscontentscript_x_y_z/amlib/sap and is certified for

use with SAP™ JCo version (3.0.6) when used on OpenText Extended ECM and version (3.0.10) when used on CSP.

SAP™ JCo library (https://support.sap.com/en/product/connectors/JCo.html) can be downloaded from SAP™

website.

199 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
https://support.sap.com/en/product/connectors/JCo.html
/installation/installation/
/installation/installation/

Installing the Content Script Extension for SAP¶

Run the Content Script SAP Extension installer and follow the installation wizard steps:

 Select "Next" when ready to start the installation. 

 Accept all the required license agreements

 The installer will prompt you for the location of the installed Content Server. Browse to

your OTCS_HOME and select "Next".


200 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

 Click "Install" to start the installation

 The installation of the required libraries will be performed

 Deploy SSAP™ JCo in the extension package repository: <OTCS_HOME>/module/

anscontentscript_2_x_0/amlib/sap. The Content Script extension for SAP relies on SAP Java

Connector (SAP JCo) to support outbound communication with the SAP Server. SAP JCo



201 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

Installation validation¶

If the Content Script Extension for SAP has been successfully installed, a new configuration

section should appear in the Base Configuration (/administration/modulesuite/#base-

configuration) page:

Configuration options¶

List of available parameters specified below:

Configuration Property Configuration Property Meaning

amcs.sap.registerDestinationProvider

Determines whether the existing xECM connection or

a custom connection should be used.When set to

TRUE the custom destination data provider is used;

when set to FALSE the existing configured SAP xECM

connection is used.

amcs.sap.activeProfiles

List of the currently active and configured sap

extension profiles. As many other extension

packages Content Script Extension for SAP allows you

to define multiple configuration profiles in order to

manage multiple connections towards different

systems.

relies on a native bridge to implement the communication with the SAP server. This

native bridge is implemented by the SAP JCo native library (sapJCo.dll). Both the SapJCo

jar file and dll must be copied in the extension package repository.

To deploy SapJCo library follow this simple procedure:

Stop Content Server service

Copy library files to the destination mentioned above

Start Content Server service

◦

◦

◦

Deploy on clustered environment

In case of a clustered Content Server installation the above steps should be performed on every cluster node.

202 Installing Module Suite Extension Packages¶

Copyright © 2013-2025 AnswerModules Sagl

/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration
/administration/modulesuite/#base-configuration

Configuration Property Configuration Property Meaning

amcs.sap.JCo.client.ashost.default Target SAP System server hostname

amcs.sap.JCo.client.client.default Target SAP System Client number

amcs.sap.JCo.client.sysnr.default Target SAP System ID

amcs.sap.JCo.client.user.default Target SAP System username to logon with

amcs.sap.JCo.client.passwd.default
Target SAP System password for the specified

username

amcs.sap.JCo.client.lang.default Language to use for the connection

Installing Extension for DocuSign

Prerequisites¶

This guides assumes the following components to be already installed and configured:

AnswerModules ModuleSuite

Script Console (OPTIONAL - only for DocuSign webhook configuration)

The following information will be required to complete the configuration procedure:

DocuSign API key

Docusign API credentials

We will refer to the Content Server installation directory as OTCS_HOME

OpenText Activator

If you have not installed the "OpenText Activator for SAP Solutions" module on your system, you can only use the

custom destinations. In this case it is necessary to install the SAP JCo version compatible with your environment.

•

•

•

•

Authentication Options

The Content Script extension supports two different authentication options when invoking DocuSign APIs:

Username / Password

Account GUID / RSA Certificate

Refer to the official DocuSign REST API guides (https://developers.docusign.com/docs/esign-rest-api) for details on

how to generate your credentials.

•

•

203 Installing Extension for DocuSign

Copyright © 2013-2025 AnswerModules Sagl

https://developers.docusign.com/docs/esign-rest-api
https://developers.docusign.com/docs/esign-rest-api

We will refer to the Script Console installation directory as SCRIPT_CONSOLE_HOME

Installation procedure¶

The Module Suite DocuSign Extension includes two components:

Content Script Extension for DocuSign

This component enables the docusign service API in Content Script. The service is the

entry point to integrating DocuSign functionality within your applications.

Script Console Extension for DocuSign (Optional)

This component enables a DocuSign webhook endpoint on Script Console. It is only

required if you want to receive automatic update notification from DocuSign whenever an

envelope status changes. For more details, refer to the official DocuSign REST API Guides

(https://developers.docusign.com/platform/webhooks/connect/create-webhook-

listener/) related to this topic.

Installing the Content Script Extension for DocuSign¶

Run the Module Suite DocuSign installer:

Follow the installation wizard steps:

•

•

1
module-ansmodulesuitedocusign-1.5.0-OTCSxxx.exe

 Select "Next" when ready to start the installation. 

204 Installing Extension for DocuSign

Copyright © 2013-2025 AnswerModules Sagl

https://developers.docusign.com/platform/webhooks/connect/create-webhook-listener/
https://developers.docusign.com/platform/webhooks/connect/create-webhook-listener/
https://developers.docusign.com/platform/webhooks/connect/create-webhook-listener/
https://developers.docusign.com/platform/webhooks/connect/create-webhook-listener/
https://developers.docusign.com/platform/webhooks/connect/create-webhook-listener/
https://developers.docusign.com/platform/webhooks/connect/create-webhook-listener/

 The installer will prompt you for the location where Content Server is installed. Browse

to your OTCS_HOME and select "Next".


 Review the installation steps for each component to be installed.

205 Installing Extension for DocuSign

Copyright © 2013-2025 AnswerModules Sagl

 Click "Finish" to complete the unpacking of the module

206 Installing Extension for DocuSign

Copyright © 2013-2025 AnswerModules Sagl

Installing the Script Console Extension for DocuSign (OPTIONAL)¶

Run the Script Console DocuSign Extension installer:

Follow the installation wizard steps

Staging

At this point, the Module has been deployed in the Content Server Staging folder and is available for module install

through the Content Server administration pages.

 Access the Content Server Admin pages > Core System - Module Configuration > Install

Modules


 Locate the AnswerModules Module Suite extension for Smart UI module and proceed

with installation


 Restart the OTCS services when prompted in order for the installation to be completed.

1
script-console-ext-docusign-2.4.0-OTCSxxx.exe

 Select "Next" when ready to start the installation. 

207 Installing Extension for DocuSign

Copyright © 2013-2025 AnswerModules Sagl

 The installer will prompt you for the location where your target Script Console instance

is installed. Browse to your SCRIPT_CONSOLE_HOME and select "Next".


 Review the installation steps for each component to be installed.

208 Installing Extension for DocuSign

Copyright © 2013-2025 AnswerModules Sagl

Update the security configuration to allow access to the webhook endpoint. Edit the Script

Console security config file:

 Click "Finish" to complete the installation

209 Installing Extension for DocuSign

Copyright © 2013-2025 AnswerModules Sagl

Add the following rule:

Configuration¶

The DocuSign Connector requires a few configuration parameters in order to be able to

communicate with DocuSign systems using the eSignature REST APIs.

In the OTCS Admin pages > AnswerModules Administration > Base Configuration section,

complete the "docusign" API configuration.

The following parameters are available:

Key Description

amcs.docusign.activeProfiles

Comma separated list of active DocuSign Accounts

profiles (default: "default"). This is a local identifier and

will not be sent over to DocuSign. It is only relevant

when more than one set of configurations has to be

specified.

amcs.docusign.appKey.default
DocuSign Integration Key: identifies your app for the

DocuSign platform.

amcs.docusign.authUser.default DocuSign Account GUID or Username

amcs.docusign.authServer.default

DocuSign authentication endpoint. This can be either

account-d.docusign.com for sandbox testing or

account.docusign.com for a production account.

amcs.docusign.appSecret.default

DocuSign Account Password or RSA Certificate. If an

Account GUID has been provided in the

"amcs.docusign.authUser.default" field, than this MUST

be an RSA Certificate private key. Otherwise, if a

1
<SCRIPT_CONSOLE_HOME>\config\cs-console-security.xml

1
<s:http pattern="/ext/docusign/docuSign.cs" security="none"/>

210 Installing Extension for DocuSign

Copyright © 2013-2025 AnswerModules Sagl

Key Description

Username has been provided, this MUST be the

account password.

amcs.docusign.appBasePath.default

DocuSign Integration Base Path. This can be either

https://demo.docusign.net/restapi (https://

demo.docusign.net/restapi) for sandbox testing or

https://www.docusign.net/restapi (https://

www.docusign.net/restapi) for a production account.

amcs.docusign.notifURI.default

DocuSign Notification WebHook URI. This is the

absolute, publicly accessible URL that DocuSign will

call for push notifications. It refers to the endpoint

installed on your Script Console instance. This value is

OPTIONAL and only required if using the push

notifications.

Admin dashboard¶

The Module Suite DocuSign Extension supports the storage of a local copy of the signing

envelope details within Content Server. The envelope status can either be periodically updated

through a scheduled job, or automatically updated using push notifications by DocuSign (using

a webhook pattern). An overview of the status of current and past envelopes can be visualized

using the DocuSign Connector Admin dashboard.

The dashboard is a Content Script based tool that can be installed in the Content Script

Volume using the Module Suite import/upgrade tool.

Before running the import, you should make the lib file available to the tool with the following

steps:

RSA Certificate format

If using the RSA certificate authentication (combined with an account GUID), the following requirements must be

met:

RSA Certificate must be stored on a single line.

Line breaks must be replaced with line feeds (\n).

The "-----BEGIN RSA PRIVATE KEY-----" block and "-----END RSA PRIVATE KEY-----" must be included.

Example:

-----BEGIN RSA PRIVATE KEY-----\nxxx....xxx\nxxx....xxx=\n-----END RSA PRIVATE KEY-----\n

Save the Base Configuration and restart Content Server services when requested

•

•

•

 On the server, navigate to the DocuSign Extension Module folder 

211 Installing Extension for DocuSign

Copyright © 2013-2025 AnswerModules Sagl

https://demo.docusign.net/restapi
https://demo.docusign.net/restapi
https://demo.docusign.net/restapi
https://demo.docusign.net/restapi
https://www.docusign.net/restapi
https://www.docusign.net/restapi
https://www.docusign.net/restapi
https://www.docusign.net/restapi

Now that the library is available, proceed to the import with the following steps:

Once the import is complete, you will be able to access the dashboard by navigating to the

following Content Server location:

and running the Dashboard script.

and locate the file named docusign integration.lib.

1
<OTCS_HOME>\module\ansmodulesuitedocusign_1_5_0\library

 Copy the file to the library folder within the Content Script Module:

1
<OTCS_HOME>\module\anscontentscript_2_4_0\library

 In a web browser, open the Module Suite Administration Base Configuration page. If

working in a clustered environment, make sure you connect to the same server on which

the library file has been copied.



 Use the "Import" tool within the base configuration to import the DocuSign Integration

library


1
Content Script Volume > DocuSign Integration > CSTools

212 Installing Extension for DocuSign

Copyright © 2013-2025 AnswerModules Sagl

Applying HotFixes

Module Suite hotfixes are typically distributed in the form of compressed file archives (.zip

files).

The content of the archive is a folder structure that mirrors the structure of the Content Server

installation directory (e.g. ''E:\Opentext'' or ''/opt/opentext/otcs'').

Below an exemplar structure of an ''hotfix'' archive:

├ module
│ ├ anscontentscript_X_Y_Z
│ ├ amlib
│ ├ ...
│ ├ ...
│ ├ hotfixes
│ │ └──── hotFix_ANS_XYZ_###.hfx
│ ├ ...
│ ├ ojlib
│ └ ...
│
└ support

├ anscontentscript
├ ...
├ amui
│ └──── js
│ └────...
└ ...

Naming convention

AnswerModules hotfixes follow a simple naming convention: they are all preceded by hotFix_ANS_ followed by an

optional string that identifies the AnswerModules product (e.g. DS for DocuSign Connector) (if absent the hotfix

must be consider for Module Suite) followed by three digits identifying the version of the AnswerModules product

followed by three digits identifying the hotfix followed by an optional string that identifies the OpenText Content

Suite version the hotfix is compatible with.

e.g.

hotFix_ANS_240_001.zip

Hotfix 001 for Module Suite version 2.4.0

hotFix_ANS_DS_150_002_CS16.zip

Hotfix 002 for DocuSign Connector version 1.5.0 to be utilized on Content Server version 16.0.X

hotFix_ANS_SMUIEXT_150_001.zip

Hotfix 001 for AnswerModules Smart View extension version 1.5.0

cumulative_hotFix_ANS_240_CS16X_009_024

Cumulative hotfix (containing hotfixes from 009 to 024) for Module Suite version 2.4.0 to be utilized on

Content Server 16.0.X

213 Applying HotFixes

Copyright © 2013-2025 AnswerModules Sagl

Hotfixes deployment¶

To install an hotfix the files provided in the hotfix archive must be deployed within the Content

Server installation directory in order to overwrite existing files and/or to add new files to the

AnswerModules product binaries.

The suggested procedure for installing an hotfix is the following:

Unless otherwise instructed by the hotfix installation notes:

uninstallation

 Extract the archive in a temporary folder;
 Read the patch installation notes carefully. The installation notes come in the form of a

text file ending with .hfx located within the module/anscontentscript_x_y_z/hotfixes

folder. The installation notes contains information about the issues addressed by the

hotfix and any additional deployment instructions to follow;



cumulative hotfix

In case of a cumulative hotfix, carefully read all the hotfixes installation notes.

 Check the contents of the archive and backup all files in installation folder of the

Content Server that will be overwritten by the hotfix;


 Stop the Content Server services;
 Copy the contents of the hotfix in the Content Server installation directory or follow

hotfix's more specific instructions for deployment;


 Restart the Content Server services

Important notes

Always read the hotfix notes before deploying the hotfix. Some hotfixes require additional operations to be

performed before or after deploying the binaries;

Always perform a backup of the patched binaries;

Make sure that the version of the hotfix matches exactly the version of the target AnswerModules product

and OpenText Content Suite environment.

Hotfixes are identified by a progressive numbering. It is imperative that hotfixes are deployed respecting

the correct sequential order, as it is possible that the same resources are patched by different hotfixes (e.g.

hotFix_ANS_260_002.zip (progressive number: 2) must not be installed

after hotFix_ANS_260_003.zip (progressive number: 3). If, for any reason, an hotfix has been skipped and has

to be later installed on a system, all subsequent hotfixes must be reinstalled in order to ensure that no

newer change has been reverted

When OpenText Content Suite is running on a clustered environment, hotfixes must be installed on all the

servers on which Content Suite is deployed.

•

•

•

•

•

214 Applying HotFixes

Copyright © 2013-2025 AnswerModules Sagl

Uninstalling Module Suite

Uninstallation procedure¶

We will refer to the Content Server installation directory as %OTCS_HOME%

Before proceeding with the uninstallation of Module Suite modules you need to complete

some housekeeping routines. These routines are not strictly mandatory and should only be

performed if you do not intend to reinstall the Module Suite on your system in the future.

 Shutdown CSEvents feature:

This feature generates records in the Distributed Agent framework table, which are then

managed by the CallbacksManagerCS handler. After uninstalling the Content Script

module this type of handler will not be longer available, with the result that several

errors will be generated in the DA framework's tables. To prevent these errors from

occurring, it is safer to disable the feature completely and wait for all occurrences of this

type of activity to be processed by the DA.

From the Administration Home, select AnswerModules Administration > Base

Configuration, then enter 34 in the amcs.core.debugEnabled property and save the

current configuration.

Once all the nodes have been restarted wait until all the occurences of

CallbacksManagerCS jobs have been processed and removed from the DA table.

You can monitor this process by executing the query below:



◦

RESTART REQUIRED

A service rest of all the nodes that are part of your cluster is required.

amcs.core.debugEnabled is now 'Module Suite - Configuration Options'

In recent version of Module Suite the property amcs.core.debugEnabled has been associated with the label

Module Suite - Configuration Options in the Base Configuration

◦

1
2
3
4
5

select count(1) as "Total", 'WorkerQueue' as "Queue" from WorkerQueue where HandlerID = 'CallbacksManagerCS'
union all
select count(1) as "Total", 'WorkerQueuePending' as "Queue" from WorkerQueuePending where HandlerID = 'CallbacksManagerCS'
union all
select count(1) as "Total", 'WorkerQueueCurrent' as "Queue" from WorkerQueueCurrent where HandlerID = 'CallbacksManagerCS'

 Delete all Content Server's columns or facets having a Content Script script as their

datasource.


215 Uninstalling Module Suite

Copyright © 2013-2025 AnswerModules Sagl

 Stop and delete all instances of worklows using Module Suite modules. Upon Module

Suite uninstallation all the currently active workflows, which make use of a feature

related to one of the Module Suite modules, will not be able to continue correctly, to

avoid errors you must wait for these workflows to end or stop and delete them.



Modify Workflow Map

Remove any Content Script Step, Content Script Workpackage, Content Script Event Script from all your

Workflow Maps

 Stop any scheduled script

From the Administration Home, select AnswerModules Administration > Manage

Content Script Scheduling unschedule any previously scheduled Content Script

script.

Wait the completion of any previously scheduled script execution. You can monitor

this process by executing the query below:



◦

◦

1
2
3
4
5

select count(1) as "Total", 'WorkerQueue' as "Queue" from WorkerQueue where HandlerID = 'ScheduleCS'
union all
select count(1) as "Total", 'WorkerQueuePending' as "Queue" from WorkerQueuePending where HandlerID = 'ScheduleCS'
union all
select count(1) as "Total", 'WorkerQueueCurrent' as "Queue" from WorkerQueueCurrent where HandlerID = 'ScheduleCS'

 (OPTIONAL) Collect and delete all the Content Script, Smart Pages, and Beautiful

WebForm Views Object objects on your system.

Although not strictly necessary, this action will prevent you from having objects on

your system that the application can no longer handle correctly. In order to easily

find collect and delete the afore mentioned objects we suggest you to create and

execute the script below, which it will create in the same container where the

script was created a collection containing all the scripts pages and views in your

system.



◦

1
2
3
4
5
6
7
8

collection = docman.createCollection(self.parent, "Module Suite Objects", "Module Suite Managed Objects")
/*
43100 BWF Views
43200 Content Script
43300 SmartPages
*/
nodes = docman.getNodesFastWith(sql.runSQLFast("""select distinct DataID "DataID" from DTree where SubType in (43100, 43200, 43300) """, false, false, -1).rows.collect{it.DataID as Long}, [], [:], false, false,false)
collection.addNodes(nodes)

Execute the script as Admin

Don't forget to create and run the above script as an "Admin" user to make sure you can collect all objects

on your system regardless of the associated permissions.

216 Uninstalling Module Suite

Copyright © 2013-2025 AnswerModules Sagl

configuration performances-tips productive

Introduction¶

In a production environment, certain conditions are often present that facilitate performance

optimizations. Unlike in development or testing environments, configurations in production are

expected to remain stable, with infrequent changes. Additionally, the components of a

distributed application are less likely to undergo modifications. Leveraging these stable

conditions, it is advisable to activate caching mechanisms specifically designed to enhance

performance.

This guide provides a comprehensive checklist of configurations recommended for review and

adjustment in a production setting. Implementing these configurations can significantly

optimize performance and enhance the user experience.

Base Configuration¶

The Base Configuration encompasses all parameters that the Module Suite utilizes for its core

functionality, as well as for all installed extension packages. To access the basic configuration

page, navigate to the Content Server's administrative interface and select the Base

Configuration link within the AnswerModules administration settings.

 (OPTIONAL) Delete the Content Script Volume and its content.

Although not strictly necessary, this action will prevent you from having objects on

your system that the application can no longer handle correctly. From the

Administration Home, select AnswerModules Administration > Open The Content

Script Volume once in the volume delete the volume's content.



◦

 Delete Beautiful WebForm SmartEditor table.

From the Administration Home, select AnswerModules Administration > Base

Configuration then click on the link DELETE under the Manage Beautiful WebForms

database section. The action will require confirmation.



◦

 Using standard Content Server features uninstall all the Module Suite modules

Uninstallation complete

The Module Suite is no longer on your system. We miss you already.

217 Introduction¶

Copyright © 2013-2025 AnswerModules Sagl

Configuration Parameters¶

The parameters available for configuration fall into two primary categories:

Performance Optimization Parameters: These parameters are specifically designed to

enhance system performance in production environments. By adjusting these settings,

you can ensure efficient operation and optimized resource use.

Usage-Based Tuning Parameters: These settings allow for the fine-tuning of the Module

Suite to align with the actual usage patterns of the tool. Given the diverse range of use

cases for the Module Suite, it is understandable that not all parameters will be relevant

to every implementation.

Below is a list of the parameters, beginning with those that have the most significant impact on

performance. For each parameter, we provide the recommended baseline value or possible

alternatives, accompanied by a brief explanation of their purpose.

Performance Optimization Parameters Table¶

The following table outlines key configuration parameters, their recommended baseline values

or alternatives, and a brief description of each parameter's purpose.

Parameter Name
Recommended

Value
Alternatives Description

amcs.amsui.volumeCache true false

Enables the caching of

the portion of the

Content Script Volume

related to

1.

2.

218 Introduction¶

Copyright © 2013-2025 AnswerModules Sagl

Parameter Name
Recommended

Value
Alternatives Description

enhancements to be

applied to the Smart

View.

amcs.amsui.volumeCache.ttl 3600 NA

The duration of the

entries in the cache

above in seconds (must

not exceed 30 days).

amcs.cache.connectionString.default

A space separated

list of hostname

and port pairs, e.g.,

myserver:8512

myserver:8513.

NA

Module Suite uses

memcache for

implementing caching

at various levels; it is

essential this

configuration contains

accurate values.

Enable/Disable Module Suite

internal cache
unchecked NA

Allows Module Suite to

cache the Content

Script Volume and

other objects.

Enables the Beautiful Webforms View

Template Cache
checked NA

Caches the information

related to the skin

associated to each

form view.

Store Static Variables in memory checked NA

Caches the information

related to the Script

static variables.

amcs.core.callbacksUserIDs 1000 empty

A comma-separated list

of user IDs for whom it

is possible not to track

sync events.

Please ensure these values are accurately reflected in your Module Suite configuration to

optimize performance and functionality.

Usage-Based Tuning Parameters Table¶

The following table provides detailed information on key usage-based tuning parameters,

including recommended settings, alternatives, and descriptions to guide adjustments based on

specific usage scenarios.

219 Introduction¶

Copyright © 2013-2025 AnswerModules Sagl

Parameter Name
Recommended

Value
Alternatives Description

Enable/Disable Asynch events

management
checked NA

This checkbox disables the

feature that tracks events on

the Content Server and

populates the queue for the

Asynchronous Job handler to

process them later. Inspect

the content of the CSEvents

folder in the Content Script

Volume to determine usage.

If no Content Scripts are

found, the feature is not

used and can be safely

disabled.

List Nodes API for complex and

convoluted ACLs
unchecked checked

This setting should be

considered if working in an

environment with many

nested groups and

experiencing problems

listing content in spaces or

folders due to complex and

convoluted ACLs.

xECM for Everything unchecked NA

Enable this feature only if

you have deployed a Module

Suite SPI adapter leveraging

the xECM for Everything

functionality.

amcs.core.callbackSynchEventsEnabled false true

This property enables the

feature that tracks events on

Content Server and triggers

the execution of configured

Content Scripts. Inspect the

content of the

CSSynchEvents folder in the

Content Script Volume to

determine usage. If no

Content Scripts are found,

the feature is not used and

can be safely disabled.

220 Introduction¶

Copyright © 2013-2025 AnswerModules Sagl

Please adjust these settings based on the actual usage patterns and requirements of your

Module Suite implementation.

Content Script Volume¶

The Content Script Volume plays a crucial role in the performance of productive environments.

Specifically, before version 3.6 of our software, failing to import the portion of the volume

dedicated to enhancements for the SmartView could lead to unnecessary database queries by

the Module Suite. This inefficiency can be effectively addressed by ensuring the SmartView-

related content of the Content Script Volume is fully imported.

Importing SmartView Enhancements¶

To import the necessary enhancements for SmartView, utilize the Content Script Import Tool.

Through this tool, you can achieve a complete setup by following these steps:

Navigate to the "SmartView" section within the Content Script Import Tool.

Click the import button to begin the process.

For detailed instructions and more information, visit the Content Script Import Tool

documentation.

By following these steps, you can enhance your system's performance by eliminating

redundant database queries related to SmartView.

1.

2.

221 Introduction¶

Copyright © 2013-2025 AnswerModules Sagl

../../../administration/csvolume/
../../../administration/csvolume_import_tool/
../../../administration/csvolume_import_tool/
../../../administration/csvolume_import_tool/

Administration

administration

Module Suite Administration Tools¶

Settings and administration tools specific to ModuleSuite components can be accessed from

the Content Server Administration pages.

Detailed information related to the single tools and configuration pages is provided in the

following sections.

Base Configuration¶

The Base Configuration page provides access to:

Software activation status

Content Script Volume Library version

ModuleSuite database maintenance utilities

global configuration of the Content Script engine, and configuration of the single API

services

configuration of custom Content Script extension modules

•

•

•

•

•

Configuration Export and Import

Since Module Suite version 3.2, the Base Configuration settings can be export and/or imported using standard

Content Server administration tools.

222 Administration

Copyright © 2013-2025 AnswerModules Sagl

Software activation key status¶

The activation status of the Module Suite software can be found in the first section of the Base

Configuration page.

The actual activation key can be found in the "Core" section of the configuration page.

Base Configuration updates and system restarts

Since Module Suite version 3.2, most changes to the Base Configuration settings no longer require a restart.

Nevertheless, certain specific features will still request a system restart: they are flagged in the Base Configuration

pages with a "restart required" label.

Apply or update the activation key

The activation key can be manually applied as described in the "Activate Module Suite by manually setting the

activation key" section in the installation.

Alternatively, since Module Suite version 3.2, the Base Configuration settings can be exported and/or imported

using standard Content Server administration tools. This includes the Module Suite activation key.

See the "Activate Module Suite by importing the activation key" section in the installation guide for further details.



223 Module Suite Administration Tools¶

Copyright © 2013-2025 AnswerModules Sagl

../../installation/modulesuite/activate_manual/
../../installation/modulesuite/activate_manual/
../../installation/modulesuite/activate_import/

Content Script Volume Library¶

An indication of the current Content Script Volume library version is shown Within the top

section of the Base Configuration page.

Enable / Disable Module Suite features¶

The amcs.core.debugEnabled is a "core" configuration bitmask you can use to customize your

Module Suite instance enabling/disabling certain core features at once. Each bit in the mask

represent a different feature that can be enabled (0) or disabled (1), or switched between

different execution modes.

Library not yet initialized warning

Upon initial installation, the Volume Library will appear as "not yet imported" and a warning message will be shown.

To finalize the installation, import the Volume Library through the Content Script Volume Import Tool.



Enhanced management in version 3.2

Since Module Suite version 3.2, each separate feature within the "core" configuration bitmask can be controlled

through checkbox selectors.

Upon toggling the single options, the overall bitmask decimal value will automatically be updated.



224 Module Suite Administration Tools¶

Copyright © 2013-2025 AnswerModules Sagl

../csvolume_import_tool/

Here below a reference for the meaning of each bit in the mask.

Position Meaning Valid values
Decimal

value

1 RESERVED 0

2

Enable/Disable Module Suite internal

cache (CSVolume, Form Templates,

SubViews, Localization etc)

0 (default)= cache enabled,

1=cache disabled
2

3 Callback script execution context mode

0(default)= single execution

context for each script of the

chain, 1= shared execution

context (same for all the scripts

in the chain)

4

4 Content Script objects indexing

0(default)= Content Script objects

are not indexed by the search

engine, 1=Content Script objects

are indexed by the search engine

8

Additionally, the system will request a restart only in case where a feature that requires it is updated.

225 Module Suite Administration Tools¶

Copyright © 2013-2025 AnswerModules Sagl

Position Meaning Valid values
Decimal

value

5
Track in the audit trail when a Content

Script is executed

0(default)= Do not track in the

audit trail the execution of

Content Scripts, 1=Track in the

audit trail the execution of

Content Scripts

16

6
Enable/Disable Asynch events

management

0(default)= Asynch events

management is enabled,

1=Asynch events management is

disabled

32

7

Perform the lookup to determined if

there are scripts to be executed

asynchronously when the event is

raised

0(default)= Any "interesting" event

for Asynch events management is

tracked in the Distributed Agent

queue and the lookup required to

determine if there are scripts to

be executed is performed later

on by the same DA worker that

manages script execution, 1=The

lookup required to determine if

there are scripts to be executed

asynchronously given the

registered event is executed

when the event is raised. The

information is passed to the DA

queue only if the lookup finds

that there are scripts that need

to be executed

64

8 RESERVED 0 128

9
Enables the Content Script Sandbox

(disabled by default)
256

10

Enables the View Template Cache (The

system is no longer going to check for

the version of the Beautiful Webforms

View Templates associated to the view

when a WebForm is rendered)

512

11

For every Content Script, it is possible

to define a set of static, precompiled

variables whose values will be

available when the script is executed.

The framework supports the definition

0(default)=cache disabled.

1=cache enabled
1024

226 Module Suite Administration Tools¶

Copyright © 2013-2025 AnswerModules Sagl

Position Meaning Valid values
Decimal

value

of these variables by means of a

second script, whose outcome is the

data map containing the values. For

performance reasons, this second

script is executed only when it changes

(or when execution is explicitly forced

by an editor), and the results are stored

as part of the script object. The

information is retrieved from the

Database upon execution when you

execute a subscript using the runCS

API or you retrive this information

using the getCSVars API on a CSScript

object. In situation in which the

Database is under stress or the

retrieval of this information does not

perform as expected it is possible to

configure the framework so that this

information is cached in memory.

12

In environments where ACL evaluation

is quite expensive it is possible to

change strategy used by the API that

fetches the information related to the

list of nodes in a container

0(default)=standard strategy

(should work well in most of the

cases), 1=Alternative strategy

(due to complex and convoluted

ACLs)

0

13

When the configuration is exported

using the standard export feature of

the Content Server, all the actual values

of the secret configuration parameters

specified on this page are omitted. You

can let the system export them by

checking this configuration option.

4096

14

Allow the Script Manager to inject

support paths information into the

script execution context. It may be

required by some extension packages

to work properly (e.g., rend)

0 8192

15

Enable "xECM 4 Everything" to

seamlessly create SPI adapters via our

Module Suite. This promotes efficient

data exchanges and streamlines

0 16384

227 Module Suite Administration Tools¶

Copyright © 2013-2025 AnswerModules Sagl

Position Meaning Valid values
Decimal

value

workflows across varied platforms.

Enhance flexibility and interoperability

for a unified digital workspace.

16

In environments where a very large

number of objects are managed, this

option ensures a proper conversion

between Oscript's 64-bit integer

representation and Java's long type.

0 32768

17

Seal Content Script Versions: When

activated, this setting blocks the

creation of new versions of Content

Scripts by users with standard

permissions. Only administrators and

those explicitly allowed to create

scripts can modify versions, helping to

ensure the integrity of your productive

environments.

0 65536

18

Limit Administrators: This feature is

recommended on productive systems.

When activated, it restricts System

Administration users from creating or

updating Content Scripts unless they

are members of the Privilege group.

0 131072

Example of valid configuration values:

Enable Content Script indexing while disabling Module Suite cache: 8+2 = 10

Enable Content Script execution audit trail while disabling Asynch events management:

16 + 32 = 48

Select default IP address¶

It is quite common for Content Server services to be installed on servers that have multiple

network interfaces associated with different IP addresses.

Sometimes it is desirable to control which interface or IP address Module Suite uses for

external communication (for example with the Content Script extension's csws service). In such

a situation you can use an additional custom configuration parameter in the base

configuration to control interface binding. In fact, the Custom property amcs.loopback.cIPs

allows you to bind an IP address to its server host address. Multiple mappings are supported.

•

•

228 Module Suite Administration Tools¶

Copyright © 2013-2025 AnswerModules Sagl

Keep in mind that IP addresses must be valid and assigned to one of the server's network

interfaces.

SASL Memcache Authentication Support¶

Module Suite 3.7.0 introduces support for SASL memcache authentication. When enabling this

feature on OTCS, follow these important steps:

Steps to Enable SASL Memcache Authentication¶

Configure the cache to use a single thread client as described above.

Enable SASL authentication in your OTCS settings.

Save the base configuration to apply the changes.

IP Mapping Configuration

hostname.domain.com=192.168.100.100.

Single Thread Client Configuration

Ensure that the cache is configured to use a single thread client. To do this:

Navigate to the Module Suite base configuration.

Locate the amcs.cache.mode.default property.

Set its value to single.

1.

2.

3.

Configuration Reload Required

After enabling SASL authentication on OTCS, you must save the Base Configuration to force a configuration reload.

1.

2.

3.

229 Module Suite Administration Tools¶

Copyright © 2013-2025 AnswerModules Sagl

Logging administration¶

The Content Script logging utility allows administrators to:

access the log file without the need to log on to the server where the log resides

configure the log level of Content Script objects that include logging instructions.

Accessing the log file¶

When opening the utility, the last lines in the log file will be automatically shown to the user. It

is possible to perform the following actions:

Refresh the screen to check for changes in the log

Rotate the log (replaces the log file with an empty one)

Download the complete log file

Log level configuration¶

The log level management section allows to change the logging level for each single Content

Script object, at runtime.

Log level selection is progressive: setting the log level to a certain threshold will instruct the

system to log all entries of that specific level, in addition to any entry of higher severity. For

example:

when setting the log to DEBUG, INFO and ERROR entries will also be logged

when setting the log to ERROR, INFO and DEBUG entries will not be logged.

•

•

•

•

•

•

•

230 Module Suite Administration Tools¶

Copyright © 2013-2025 AnswerModules Sagl

Scheduling management utility (Manage

Scheduling)¶

The Content Script Scheduling administration panel provides a quick overview of the Content

Script objects that are queued for scheduled execution, together with the next fire time, the

expression used to calculate the execution schedule, and generic information related to the

object itself. The object menu allows to easily access the node standard functions.

No restart required

Logging level can be changed at runtime without restarting the Content Server.

Past logs below threshold cannot be recovered

Note that changing the log level will only affect any future logging operations.

Past log entries below the original threshold are discarded and cannot be recovered.

Default log level is restored on system restart

Changes to the log level performed through this tool do not survive a restart of the OTCS services.

Upon restart, the log level will be set back to the default value (typically "ERROR").

Where is my log ?

The log management utility is not centralized: when running on a clustered environment, it is important to note

that the utility will only show log contents and loggers configuration for the current server that is being accessed.

Logging, on the other hand, is specific to the single server/instance where the operation triggering the log is

performed. It is important to keep this in mind when analyzing the log data, as an operation could have been

executed on different servers. For example, logging entries related to scheduled scripts or asynchronous callbacks

will typically be found on the servers where the Distributed Agents are set to run.

231 Module Suite Administration Tools¶

Copyright © 2013-2025 AnswerModules Sagl

An unschedule utility allows to stop the scheduling of the corresponding script.

Callbacks management utility (Manage Callbacks)¶

The Callbacks management utility provides a tool to verify in every moment what Content

Script callbacks will be executed for specific objects in response to specific event types.

The utility provides a set of filters that allow to identify:

the target object

the specific callback type(s) to be analyzed

the callback mode (synchronous or asynchronous)

Based on the filter, the result will show a list of affected nodes.

Module Suite Report utility¶

The Module Suite Report utility allows the administrators to generate a report containing

information relevant to the installation, configuration and execution of Module Suite.

Configuration

The complete set of configuration options for Content Script scheduling (as well as impersonation settings) are

available through the Content Script editor Administration tab

•

•

•

232 Module Suite Administration Tools¶

Copyright © 2013-2025 AnswerModules Sagl

This is especially useful in case of issues to share details regarding the environment with

product support representatives.

The generated report is in text format, as show below:

The Content Script Volume¶

The Content Script Volume is a Content Server volume automatically created upon module

installation.

The volume is used to store objects for various purposes. Among others, in the Content Script

volume we may find:

System Objects: Objects necessary for the correct execution of different Module Suite

components. These objects should not require modification in normal cases.

Configuration Objects: Objects used to configure specific functionalities

standard UI customization

event callback configuration

custom column data sources

•

•

•

•

•

233 The Content Script Volume¶

Copyright © 2013-2025 AnswerModules Sagl

Template Objects: Various sorts of objects to be used as templates, such as:

Content Script code snippets

Beautiful WebForms form templates

Beautiful WebForms form components

HTML view templates

…

Service Scripts: Scripts executed as service endpoints

Content Script backing REST services

…

Whenever possible, a convention-over-configuration approach is adopted in the Content Script

Volume: simply placing a specific object in a specific position will be enough to alter in some

way the behavior of some functionalities.

For this reason, a set of predefined containers is available in the volume, each one meant for a

specific purpose. Here after is a view of the Content Server Volume.

The following sections will explain the purpose of each of the Containers.

•

•

•

•

•

•

•

•

•

How should I organize my volume ?

Even though the Content Script Volume has a predefined container structure, it is not unusual to have custom user

data to be stored in the volume. Users are encouraged to use the volume to store custom templates and

configurations, for example.

234 The Content Script Volume¶

Copyright © 2013-2025 AnswerModules Sagl

CSSystem¶

The CSSystem container is dedicated to Module Suite system components. The contents in this

location should not require editing except for very specific reasons.

CSFormTemplates¶

This container is dedicated to HTML templates associated to Beautiful WebForms Views.

It will be covered in detail in the sections dedicated to Beautiful WebForms (/working/

bwebforms/sdk/#csformtemplates).

CSHTMLTemplates¶

The CSHTMLTemplates is a container dedicated to general-purpose HTML templates that could

be necessary throughout Content Script applications.

As previously seen, Content Script can be used to create various types of output, including web

pages and document. Additionally, a few services (such as the mail service) can use templates

to perform their job.

235 The Content Script Volume¶

Copyright © 2013-2025 AnswerModules Sagl

/working/bwebforms/sdk/#csformtemplates
/working/bwebforms/sdk/#csformtemplates
/working/bwebforms/sdk/#csformtemplates
/working/bwebforms/sdk/#csformtemplates

It is usually discouraged to place HTML templating code directly within Scripts: the suggested

approach is to separate the presentation templates from the underlying business logic, and to

store it somewhere else on Content Server, where it can be reused across applications.

The CSHTMLTemplates container is available for developers as a common storage for

templates necessary in their applications.

CSFormSnippets¶

The CSFormSnippets container is dedicated to the libraries of components that are available to

build Beautiful WebForms views.

It will be covered in detail in the sections dedicated to Beautiful WebForms.

CSScriptSnippets¶

The CSScriptSnippets container features a two-level structure identical to the one described

for the CSFormSnippets container, except that the objects stored here are not form

components but Code Snippets to be used to simplify the creation of new scripts in the

Content Script Editor.

As for the Form Snippets, new families and components added in this container will

automatically be available in the Code Snippet library of the Content Script Editor.

administration installation upgrade

Content Script Volume Import Tool¶

Overview¶

Module Suite's components behaviour and functionalities can be modified and extended by

manipulating the content of the Content Script Volume (a Content Server’s Volume created

when installing the Content Script module).

Prior to Module Suite version 3.2, all Content Script Volume resources had to be necessarily

imported in the Volume, with no exceptions. Starting with version 3.2, Module Suite is capable

of using certain resources (CSFormSnippets, CSScriptSnippets, CSPageSnippets) directly from

Major change in version 3.2.0

Since Module Suite version 3.2.0, there have been major changes in the way the content of the Content Script

Volume is managed.

236 Content Script Volume Import Tool¶

Copyright © 2013-2025 AnswerModules Sagl

../csvolume/

the Module installation folders on the filesystem, without the strict need to "materialize" them

in the Content Script Volume. This approach allows to avoid the overhead of importing certain

resources if the administrator does not plan to customize them, but it optionally allows to

"materialize" them in the Volume if needed.

This new approach allows to significantly reduce the effort required in validating the content of

the Content Script Volume and solving conflicts in case of updates, since if the resources have

not been materialized, the update will be transparent for the users (the library in the new

Module version will replace the old one).

As a result of this new approach, the CSVolume administration tools have been reorganized

and updated.

All "system critical" resources are now automatically imported (and updated) though a Volume

Library management utility. This currently includes:

CSSystem

CSServices

CSi18n

CSImports

CSPageTemplates

CSFormTemplates

CSPageSnippets (folder structure only)

CSFormSnippets (folder structure only)

Optional "feature activation" resources can be boostrapped on-demand through a dedicated

set of utilities ("Module Suite Features"). This will include reources such as:

CSEvents

CSSynchEvents

CSMenu

...

The following resources are not imported by default, as the system is capable of using them

from the original library on the filesystem :

CSFormSnippets

CSPageSnippets

CSScriptSnippets

Nevertheless, it will be possible to "materialize" them locally using the Volume Conflict

Resolution utility.

This section will describe the available tools designed to simplify the management of the

content of the Content Script Volume, handling new imports, updates and conflicts resolution.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

237 Content Script Volume Import Tool¶

Copyright © 2013-2025 AnswerModules Sagl

Accessing the Content Script Volume Import Tool¶

In order to access the Content Script Volume Import Tool:

Volume Library utility¶

One of the main features of the Content Script Volume Import Tool is to assist the OTCS system

administrator in the management of the core Volume Library. This library includes all Content

Script Volume elements that are critical for the execution of Module Suite. As part of the initial

installation process, the Volume Library should always be imported in the Content Script

Volume.

When opening the Content Script Volume Import Tool, the "Volume Library" section will

occasionally show up as the very first section in the page.

On initial installation, an alert message will notify the administrator that the Volume Library

has not been imported yet.

In case of subsequent upgrades, the Content Script Volume Import Tool should always be

checked to verify the presence of changes to be imported. In case of pending updates, the

Library Update section will show, together with an "import" button.

 As the system Admin user, open the Content Server Administration pages.

 Locate the AnswerModules Administration section. Within this section, open the Content

Script Volume Import tool.


238 Content Script Volume Import Tool¶

Copyright © 2013-2025 AnswerModules Sagl

Once complete, the Volume Library import will prompt the user to refresh the page.

If the "Volume Library" section not shown, the Volume Library is up-to-date and no action

should be taken.

Module Suite Features utilities¶

The Content Script Volume Import Tool is also used to control the root Content Script Volume

elements required to activate certain functionalities of the Module Suite.

For each feature, a dedicated section of the tool will allow to automatically bootstrap the

related Content Script Volume content. A table with the following values is shown:

Folder : The corresponding CSVolume root folder required to activate this feature

Description : Additional usage details of the folder

Imported (y/n) : A status flag showing wether the resource has been already imported in

the system

Additionally, each section will include an import button.

When using the import, the specific folders (and the initial content, if necessary) will be

automatically set up on the system. If the import function is used for resources that were

already imported, any missing resource will be initialized, but existing resources will not be

touched.

At the present moment, the following features can be activated:

Events¶

Manages all resources necessary to use the Content Script Callbacks (synchronous and

asynchronous).

•

•

•

239 Content Script Volume Import Tool¶

Copyright © 2013-2025 AnswerModules Sagl

Classic View¶

Manages all resources necessary to use the Content Script extension for Classic UI features.

Columns¶

Manages the resources necessary to create Content Script column datasources.

Smart View¶

Manages all resources necessary to set up Smart UI overrides using the Smart Pages

capabilities.

Tools¶

Imports the available Content Script Tools (e.g. BWF Studio, PDF Viewer, ...)

240 Content Script Volume Import Tool¶

Copyright © 2013-2025 AnswerModules Sagl

Extended ECM¶

Sets up the resources required to use the "xECM for Everything" capabilties.

Volume's Conflicts Resolution utility¶

Since Content Script Volume objects are accessible and customizable by the Module Suite

administrators and developers, it is possible to generate conflicts between the customized

versions and the new/updated versions included in Module Suite upgrade packages.

The Content Script Volume Import Tool includes a utility that lets the administrators:

identify and resolve any version conflicts in the Content Script Volume.

materialize certain resources in the Content Script Volume in order to allow for local

customization.

Upon opening the page, the tool will automatically trigger the analysis of all the objects

present within the Content Script Volume. This operation might require some time to complete,

depending on the content of the Content Script Volume.

Once the analysis is complete, the utility will present with a tree view of all relevant Content

Script Volume resources.

•

•

241 Content Script Volume Import Tool¶

Copyright © 2013-2025 AnswerModules Sagl

The following resources will always be present, regardless of their status:

CSFormSnippets

CSScriptSnippets

CSPageSnippets

All other containers will only be present in case of conflicts with the corresponding filesystem

resources.

Identifying conflicts¶

For each resource, depending on the status, the administrator will have a choice to handle the

conflict.

For CSFormSnippets, CSScriptSnippets, and CSPageSnippets that have not been

materialized on the system, the utility will show a "Not overridden" status. Importing the

object will result in the object being created in the system. This will override the original

library object when that specific resource is used.

For CSFormSnippets, CSScriptSnippets, and CSPageSnippets that have been materialized

on the system, the utility will show any conflicting situation (for example, if the version

on the system is different from the one in the original library). It is up to the

administrators to solve or ignore these conflicts.

For all other resources (which the system is not capable of using if not imported in the

Content Script Volume), that have not been imported, the utility will show a notice that

the object is available to be imported.

For all other resources (which the system is not capable of using if not imported in the

Content Script Volume), that have been imported, the utility will show any conflict status

(newer version available for import, conflict, etc..). It is up to the administrators to solve

or ignore these conflicts.

•

•

•

•

•

•

•

242 Content Script Volume Import Tool¶

Copyright © 2013-2025 AnswerModules Sagl

Import options¶

The utility presents two distinct options to import the selected objects.

Import option: this will result in the materialization of the selected resource(s) in the

Content Script Volume. In case the resource was already present in the Volume, it is

skipped and the local changes are not reverted.

Override and update : this will result in the materialization of the selected resources(s),

regardless of the presence of a local version in the Content Script Volume. This operation

will override any changes performed locally.

•

•

243 Content Script Volume Import Tool¶

Copyright © 2013-2025 AnswerModules Sagl

Content Script

Getting Started with Content Script¶

This guide provides a quick introduction to Content Script and helps you get started with

creating custom scripts and extending Content Server functionality.

What is Content Script?¶

Content Script is a Domain-Specific Programming Language (DSL) for OpenText Content Server.

It enables you to programmatically interact with Content Server and external systems,

automate business processes, create custom web interfaces, and extend Content Server

functionality without traditional OScript development.

For a comprehensive overview, see the Content Script Architecture.

Key Components¶

The Content Script module includes:

Content Script Objects - Document-class objects that contain executable Groovy-based

scripts

Web-based IDE - Integrated development environment for creating and editing scripts

API Services - Comprehensive set of services for interacting with Content Server and

external systems

Event Callbacks - Synchronous and asynchronous event handlers for Content Server

events

REST API Support - Expose scripts as RESTful web services

Workflow Integration - Use scripts as workflow steps with routing capabilities

SDK - Toolkit for creating custom Content Script services

Quick Start Guide¶

1. Understanding the Basics¶

Start by reading the Content Script Architecture to understand:

How Content Script works

•

•

•

•

•

•

•

•

244 Content Script

Copyright © 2013-2025 AnswerModules Sagl

../scripts/
../scripts/

API Services and execution context

Script execution modes and outputs

2. Creating Your First Script¶

Learn how to create and manage Content Script objects:

Content Script Objects - Creation, properties, static variables, scheduling, and

impersonation

Content Script Editor - Learn how to use the web-based IDE to write and test scripts

3. Learning the Language¶

Understand the Content Script language syntax:

Content Script Language - Groovy-based syntax, operators, closures, and programming

constructs

4. Working with APIs¶

Explore the available API services:

Content Script Architecture - Complete overview of all API services (docman, workflow,

search, users, mail, etc.)

5. Event-Driven Programming¶

Implement event callbacks:

Events and Callbacks - Synchronous and asynchronous event handlers for Content Server

events

6. Extending Functionality¶

Explore advanced integrations:

REST API - Expose scripts as RESTful web services

Workflow Integration - Use scripts as workflow steps

Rendition - Programmatically invoke external rendition engines

SAP Integration - Integrate with SAP ERP systems

SDK - Create custom Content Script services

•

•

•

•

•

•

•

•

•

•

•

•

245 Getting Started with Content Script¶

Copyright © 2013-2025 AnswerModules Sagl

../otcsobj/
../editor/
../lang/
../scripts/
../events/
../rest/
../workflows/
../rend/
../sap/
../sdk/

Content Management Object

Content Script objects are document-class objects on Content Server.

Content Scripts are restricted objects: as such, users must be enabled to the creation of new

objects through the Administration pages.

Content Scripts are executable objects, and the execution is the default action associated to

the object.

Being standard objects, Content Scripts comply with Content Server permissions model. Make

sure you assigned the proper permissions to your scripts.

Upon creation, the object can be edited with the web-based IDE selecting the 'Editor' function

in the object function menu. The function is also available as a promoted function.

Creating a Content Script¶

To create a new Content Script object you can leverage the standard add item menu:

246 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

Object's properties¶

This section covers the following topics:

Content Script Static variables

Scheduling a Content Script

Running a Content Script as a different user

Changing the default GUI icon for a Content Script object

Static variables¶

For every Content Script, it is possible to define a set of static, precompiled variables whose

values will be available when the script is executed.

The framework supports the definition of these variables by means of a second script, whose

outcome is the data map containing the values. For performance reasons, this second script is

executed only when it changes (or when execution is explicitly forced by an editor), and the

results are stored as part of the script object.

One of the reasons for having a script to define a static variable (instead of explicitly setting

the value of the variable itself) is code portability: instead of defining the value of a variable, it

is possible to define a rule to calculate that value. A typical example would be the Object ID of

an object located in a specific position in Content Server: in case the code is moved to a

different environment, the ID would be recalculated automatically.

Static variables are accessible within the Content Script through the csvars object.

•

•

•

•

Each Content Script object has its own csvars constants. In complex applications, that include multiple Content

Script objects, it is often useful to have all constants defined in one single file. This can be done by creating a

Content Script dedicated to be the “constants” script, that will be run by the single scripts in the application to load

the variable values in the context.

247 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

Scheduling¶

Content Script supports the automatic execution of scripts through its internal scheduler.

The Content Script scheduling utility is available from within the Specific > Advanced Settings

tab or from the Content Script Editor in the Administration tab (if visible). The utility allows to

schedule the automatic execution of Content Scripts (that is, without the need for a user to

trigger the execution explicitly).

The scheduling is configured by means of a cron expression. A cron expression is a string

comprising a set of fields separated by spaces, and identifies a set of times.

Cron expressions are powerful but can also be quite complex. For this reason, a simplified

configurator with drop-down menus can be used to create the desired cron expression.

Skilled users can always flag the “Advanced Mode” checkbox to disable the configurator and

compose their own expressions.

Once ready, the scheduler can be enabled by flagging the “Enable Scheduling” checkbox.

It is possible to stop a script from being rescheduled in case of execution errors. To do so,

simply flag the “Stop on Error” checkbox.

Where is the log ?

248 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

Impersonate¶

Content Script supports the execution of a script impersonating specific users.

This configuration applies for both:

scripts explicitly executed by users

scripts executed by the system (scheduled, workflow steps, callbacks, etc…)

The “Run As” configuration panel is accessible within the Specific > Advanced Settings tab or

from the Content Script Editor in the Administration tab (if visible).

Icon Selection¶

Given the flexible nature of Content Script objects (both in terms of behaviour and execution

outcome) it is often useful to be able to distinguish them at-a-glance. One way is to customize

the default icon used by Content Server for the object.

The desired icon can be selected by clicking on the icon button on the Content Script's

Developer tab and selecting a specific icon within a set of available icons.

Content Script scheduling takes advantage of the Content Server’s Distributed Agent framework. While normally

executing a script will cause it to be run in the current front end server, a scheduled script could actually be

executed on any server on which Distributed Agents are activated.

•

•

In order to be able to perform a “Run As” configuration, a user must have impersonation privileges.

249 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

Editor

Content Script objects can be edited with the dedicated web-based IDE selecting

the 'Editor' function in the object function menu. The function is also available as a promoted

function.

250 Editor

Copyright © 2013-2025 AnswerModules Sagl

The web-based IDE (Integrated Development Environment) for Content Script appears as

follows:

251 Editor

Copyright © 2013-2025 AnswerModules Sagl

Shortcuts¶

The following keyboard shortcuts are available while using the editor:

Shortcut Description

Ctrl + S Save the current script (add a new version)

Ctrl + H Toggle the online Help window

Ctrl + F Open the ‘Search’ tools panel

Ctrl + Shift + F Open the ‘Search and Replace’ tools panel

Ctrl + Space Show the code autocompletion hints

Ctrl + J Trigger the execution in the test frame

Ctrl + P Inject the full path of the selected node in the Content Script editor

Top Bar controls (DEVELOPER)¶

252 Editor

Copyright © 2013-2025 AnswerModules Sagl

Command Description

Versions

Save the script (adds a new version)

Save the content script properties (i.e. the icon) as well as the static

variables (does not add a new version)

Open the object’s Versions tab

Close the Content Script Editor

Edit

Erases the last change done

Opposite of Undo

Change the script’s associated icon

Display the last 200 lines of the ModuleSuite’smaster log file

Disable the script's real-time validation

Execution

Run the script in the current window (CTRL + J)

Save the script and run it, showing the result in the editor’s bottom panel

Comparison

Toggle comparison: toggles the comparison of the current version of the

script with the selected.

Editor

Theme:Changes the theme applied to all the RPA embedded editors

Help

Access the module’s online guide and the support portal

253 Editor

Copyright © 2013-2025 AnswerModules Sagl

Command Description

Validation

Red label: The script failed the validation and most likely will fail to compile

Green label: The script is well-formed

Smart Completion: Activate smart completion to enhance code suggestions

Predictive Completions: When enabled, the editor automatically computes

a code suggestion at the current cursor position, even without an explicit

request from the user, in order to speed up completion generation.

(default: disabled)

Top Bar controls (ADMINISTRATOR)¶

Command Description

Versions

Save the content script properties (i.e. the icon) as well as the static

variables (does not add a new version)

Scheduling

Toggle script scheduling

Toggle script advance scheduling mode

Toggle re-scheduling abortion on script’s execution error

Impersonation

Select the user that will be always used to run the script

Clear impersonation setting

Manage Log

254 Editor

Copyright © 2013-2025 AnswerModules Sagl

Command Description

Trigger ModuleSuite’s master log rotation

Trigger ModuleSuite’s master log download

Auto-completion¶

The Content Script Editor features a code completion assistant functionality. While typing use

the ctrl + space key combination to retrieve the suggested values.

In some cases the Content Script’s inference engine might not be capable of determining the

actual type of the expression you are trying to auto-complete. In these cases the auto-

complete feature will prompt you to firstly specify the type against which the auto-completion

should be performed and then will switch to the standard behaviour.

If the actual type (class) of your expression is not listed among the results you can still specify

the fully qualified class name to autocomplete against that class: e.g. (java.lang.String)

List of the most common API objects returned by Content Script APIs

| Content Script API Objects ||| |-----------------------------|-----------------------------|----------------------------| |

ACSBrowseViewRowProvider | CSMemberImpl | CSRMRecordTemplate | | AMBWFWidgetsLib |



255 Editor

Copyright © 2013-2025 AnswerModules Sagl

AI Autocompletion¶

The AI Autocompletion feature provides intelligent, context-aware code suggestions directly

within the Script Editor. When enabled, it calculates a variable number of potential code

completions for the code immediately to the left of the cursor.

To generate relevant completions, the system analyzes both the full set of available Content

Script APIs and the current context of the script being edited. This is considered an

experimental feature, and must be explicitly enabled via the Smart Completion switch in the

editor options. As a prerequisite, the C.A.R.L. integration must be properly configured and

enabled on your system.

In addition to manual suggestions, there is a Predictive Completion switch. If this is enabled,

the editor will automatically compute possible code completions based on the cursor's current

position, even if the user hasn't explicitly requested them. This allows the system to keep a

background "cache" of likely completions ready for the user, making the experience more

seamless and responsive.

CSMemberPrivilegesImpl | CSRMRecordTraits | | AdlibJobResult | CSMemberRightImpl | CSRMUserFunctions | |

CSANSTemplateFolderImpl | CSMenu | CSRMXReference | | CSAssignmentImpl | CSMenuItem | CSReportImpl | |

CSAttachmentImpl | CSMilestoneImpl | CSReportResultImpl | | CSBeautifulWebFormViewImpl | CSMilestoneInfoImpl

| CSResourceImpl | | CSBrowseViewAddItemButton | CSNewsBuilderImpl | CSScriptImpl | | CSBrowseViewColumn |

CSNewsImpl | CSSearchQueryBuilderImpl | | CSBrowseViewMultiItemButton | CSNodeAuditDataPageImpl |

CSSearchResultImpl | | CSBrowseViewRow | CSNodeAuditRecordImpl | CSSetAttributeImpl | | CSCategoryFolderImpl

| CSNodeImpl | CSShortcutImpl | | CSCategoryImpl | CSNodePageImpl | CSSpreadsheet | | CSCategoryTemplateImpl

| CSNodeResultImpl | CSSubMenu | | CSChannelImpl | CSNodeRightImpl | CSTaskBuilderImpl | | CSCollectionImpl |

CSNodeRightsImpl | CSTaskGroupImpl | | CSCompoundDocImpl | CSPDFFormField | CSTaskGroupInfoImpl | |

CSCompoundDocReleaseImpl | CSProjectImpl | CSTaskImpl | | CSDiscussionImpl | CSProjectInfoImpl |

CSTaskInfoImpl | | CSDiscussionItemImpl | CSProjectPartecipantsImpl | CSTaskListImpl | | CSDocumentImpl |

CSProjectRoleUpdateInfoImpl | CSTaskListInfoImpl | | CSEmailImpl | CSRMClassification | CSUnreadInfoImpl | |

CSEmailMessage | CSRMClassificationTypes | CSUrlImpl | | CSExportOptionsImpl | CSRMField | CSUserImpl | |

CSFTPFile | CSRMFieldsInfo | CSVersionImpl | | CSFolderImpl | CSRMHold | CSVirtualFolderImpl | | CSFormImpl |

CSRMHoldDistribution | CSWebReportImpl | | CSFormTemplateDefinitionImpl| CSRMHoldDoc | CSWordDoc | |

CSFormTemplateImpl | CSRMHoldPage | CSWorkPackageImpl | | CSGenerationImpl | CSRMProvenance |

CSWorkflowAssignedTaskImpl | | CSGroupImpl | CSRMRSIRetention | CSWorkflowAttachmentsImpl | |

CSImportOptionsImpl | CSRMRecord | CSWorkflowAttributesImpl | |CSWorkflowAuditRecordImpl |

CSWorkflowCommentsImpl |CSWorkflowFormDataImpl | |CSWorkflowInstanceImpl |CSWorkflowMapImpl |

CSWorkflowQueryBuilderImpl | |CSWorkflowSearchHandleImpl |CSWorkflowStartDataImpl |CSWorkflowFormsImpl | |

CSWorkflowTaskActionsImpl |CSWorkflowTaskCommentImpl |CSWorkflowTaskDetailsImpl | |CSWorkflowTaskImpl |

CSWorksheet |FTPConfigProfile | |FieldInfo |Form |GCSAdlibJob | |GCSCategory |GCSTableOfContents |

GCSWatermark | |LDAPConnection |NodeListRowProvider |PDFOverlayText | |PDFWaterMark |SQLQueryRowProvider |

SampleContextAwareObject | |SampleObject |SearchResultRowProvider |SinglePageRowProvider |

Note

Smart Completion must be enabled for AI-driven code suggestion to work, and requires C.A.R.L. to be active

and properly configured.

Predictive Completion enhances responsiveness by precomputing possible completions in the background

and storing them in a cache.

•

•

256 Editor

Copyright © 2013-2025 AnswerModules Sagl

These options can be toggled in the Script Editor UI, giving you control over the level of AI

assistance you want to use during script development.

Code Validation¶

Every time a change is made to the script, a code validator attempts to check the formal

correctness of the code. A validation status icon placed on the bottom right side of the

working area will show the result of the validation. Code that fails the validation status check

will most likely contain formal errors and will fail to compile correctly, if executed.

Versions tab¶

Content Script objects are subject to versioning on Content Server, just like any other

document-class object. Every time the Content Script is saved in the IDE, a new version is

created.

Older versions of the Script can be opened in the Script Editor for editing. If saved, a new

(latest) version will be created.

Code Snippet library¶

In order to simplify the creation of new scripts, a library of pre-configured ready-to-use code

snippets is available in the Script Editor.

257 Editor

Copyright © 2013-2025 AnswerModules Sagl

Snippets are grouped in families of objects with similar features. In order to use a snippet in

Content Script:

Navigate the library until you find the suitable snippet

Place the cursor in the Working Area location where you wish to place the code

Click on the snippet to open the Configuration Panel

The code snippet could contain place-holders for some configuration variables (for

example, in case of a “create document” snippet, a configurable option could be the

target container where to create the document.) In this case, configuring the variables as

required.

Click Save. The resulting code will be placed at the location of the cursor in the working

area.

Online Help¶

The Content Script IDE features two different online help guides:

The complete API Reference (accessible with the Ctrl + H shortcut)

The Content Script Module Help (accessible through the standard Content Server Help, or

through the “Help” button in the Top Bar of the IDE)

The Content Script API Reference can be toggled in a navigable panel on the right side of the

screen and describes the programming interfaces of all objects and services that are available

1.

2.

3.

4.

5.

once the code is placed in the working area, it can be further modified as necessary.

•

•

258 Editor

Copyright © 2013-2025 AnswerModules Sagl

in the Content Script context. A more thorough description of the available APIs is presented in

the following sections.

Language basics

Content Script is a Domain-Specific Programming Language (DSL) for OpenText Content Server.

The language is based on Oscript and exposes a Groovy interface to developers. Groovy (

http://www.groovy-lang.org/ (http://www.groovy-lang.org/)) is a widespread dynamic language

for the Java Virtual Machine, particularly indicated for the creation of DSLs.

Content Script language syntax is fully compatible with Groovy.

Under the hood, a mix of Oscript and Java features allow for a deep integration with Content

Server functionalities, as well as for an extreme ease of integration with external systems.

The following sections are meant to be an introduction to the language.

259 Language basics

Copyright © 2013-2025 AnswerModules Sagl

http://www.groovy-lang.org/
http://www.groovy-lang.org/

Statements¶

The definition of variables can be either generic or restricted to a specific type. Assigning a

value to a variable that does not match its type will force the engine to attempt to cast its

value to the given type. In case no conversions can be done, it will result in an error.

With String variables, a few useful tricks are available:

Basic Control Structures¶

Below are the basic structures for flow control and iteration

if – else statement

if – else if – else statement

inline if statement

switch statement

// Defining a local variable can be done either by
// 1) declaring explicitly its type
// 2) using the "def"
int anInt = 1

String aString = "text"

def anObject = "anything"
anObject = 123

// Strings can be defined both with quotes ('') or double quotes ("")
String aString = "text"
String anotherString = 'text'

// Selecting the alternative "" or '' can be useful if quotes are present in the string content
String aQuote = "this is a quote: 'My words...' "
String anotherQuote = 'this is a quote: "My words..." '

// using triple """ allows to span across multiple lines for string
// definition. Useful for readable SQL queries, for example..
String multilineString = """SELECT *
 FROM DTREE
 WHERE DATAID = 2000"""

Lists and Maps can be defined very easily
def aList = ["firstElement", "secondElement"]

def aMap = [firstKey:"firstValue", secondKey:"secondValue"]

// statements can span across multiple lines
def multilineDefinition = ["firstElement",

"secondElement"]

// collections can contain different kinds of elements
def aMapWithStringsAndInts = [first:"one", second:2

•

•

•

•

260 Language basics

Copyright © 2013-2025 AnswerModules Sagl

while loop

for loop

Flow control: if – else¶

Flow control: if - else if - else¶

Flow control: inline if - else¶

Flow control: switch¶

•

•

if(a == b){
//do something

} else {
//do something else

}

if(a == b){
// do the first thing

} else if(c == d){
// do a second thing

} else {
// do something else

}

a = (b == c) ? "c is equal to b" : "c is different from b"

switch (a) {
case "a":

result = "string value"
break

case [1, 2, 3, 'b', 'c']:
result = "a mixed list of elements"
break

case 1..10:
result = "a range"
break

case Integer:
result = "is an Integer"
break

case Number:
result = "is a Number"
break

default:
result = "default"

}

261 Language basics

Copyright © 2013-2025 AnswerModules Sagl

Looping: while¶

Looping: for¶

Operators¶

All Groovy operators can be used in Content Scripts:

Operator Name Symbol Description

Spaceship <=>
Useful in comparisons, returns -1 if left is smaller 0 if == to right or

1 if greater than the right

Regex find =~ Find with a regular expression

Regex match ==~ Get a match via a regex

Java Field

Override
.@

Can be used to override generated properties to provide access to

a field

Spread *. Used to invoke an action on all items of an aggregate object

def a = 0

while (a++ < 10){
// do something ten times

}

def b = 10

while (b-- > 0) {
// do something ten times

}

// Standard Java loop
for (int i = 0; i < 5; i++) {

}

// range loop
for (index in 0..100) {

// do something
}

// list or array loop
for (index in [0, 10, 20, 40, 100]) {

// do something 5 times
}

// map looping
def aMap = ['first':1, 'second':2, 'third':3]

for (entry in aMap) {
// do something for each entry (the values can be accessed and used)
entry.value

}

262 Language basics

Copyright © 2013-2025 AnswerModules Sagl

Operator Name Symbol Description

Spread Java

Field
*.@ Combination of the above two

Method

Reference
.&

Get a reference to a method, can be useful for creating closures

from methods

asType Operator as Used for groovy casting, coercing one type to another.

Membership

Operator
in Can be used as replacement for collection.contains()

Identity

Operator
is

Identity check. Since == is overridden in Groovy with the meaning

of equality we need some fallback to check for object identity.

Safe Navigation ?. returns nulls instead of throwing NullPointerExceptions

Elvis Operator ?: Shorter ternary operator

Methods and Service Parameters¶

Methods on objects can be called using the dot "." followed by the method signature and

parameter clause.

Methods can be called omitting the parenthesis in the parameter clause, given that (a) there is

no ambiguity and (b) the method signature has at least one parameter.

Properties and Fields¶

Properties and public fields of objects can be accessed using the dot "." followed by the

property or field name.

out << template.evaluateTemplate("""
#@csform(false, "Submit")
 <label for="myFile">File to be uploaded</label>
 <input type="file" name="myFile" />
#end
""")

if(params.myFile && params.myFile.filelength){
def parentNode = docman.createFolder("MyFolder")
def file = new File(params.myFile)
if(file && file.canRead()){

docman.createDocument(parentNode, params.myFile_filename, file, "", false, parentNode)
//Redirect after submit
redirect "${url}/open/${self.ID}"

}
}

// In certain cases, parenthesis can be omitted
docman.createFolder "MyFolder"

263 Language basics

Copyright © 2013-2025 AnswerModules Sagl

A safe syntax to navigate through fields is available in Groovy by adding a "?" before the dot. In

this case, the chain will be interrupted if one of the intermediate values is undefined, avoiding

an exception to be raised.

Comments¶

Closures¶

Content Script inherits from Groovy the concept of Closures. A closure is an open, anonymous,

block of code that can take arguments, return a value and that can be assigned to a variable.

def folder = docman.createFolder("myFolder")

// Accessing an object property
def me = folder.createdBy

// Safe field access (no exception raised if folder is NULL)
def me = folder?.createdBy

// Comments are available as single line // and multiline /* */

def a = 1 // A comment can close a line

/* Or span
over multiple
lines */

// Define a closure and assign it to a variable
def addNumbers = { def num1 , def num2 -> //Arguments

return (num1 as int)+(num2 as int)
}

out << "Calling the addNumbers closure:${addNumbers(4, "5")}
"

addNumbers = { String... arguments -> // Variable number of arguments (MUST be the last parameter)
def total =0
arguments.each{total+=(it as int)}
return total

}

out << "Calling the addNumbers closure:${addNumbers("1", "2","3")}
"

def createNewFolder = { String name, def parentNode = docman.getEnterpriseWS() ->
docman.createFolder(parentNode, "name")

}

def node = createNewFolder(new Date().format("yyyyMMddHHss"))
out << "Calling the createNewFolder with One arguments:${node.ID}
"

def newNode = createNewFolder(new Date().format("yyyyMMddHHss"), node)
out << "Calling the createNewFolder with Two arguments:${newNode.ID}
"

264 Language basics

Copyright © 2013-2025 AnswerModules Sagl

Content Script programming valuable resources¶

A number of resources can be extremely useful to the Content Script developer at different

times. A few of the most important ones are:

Online help

The Content Script Module features an online guide that covers the basic language syntax and

functionalities. It also contains quick references to context variables and methods.

Code Snippet Library

When using the Content Script Editor, a library of ready-to-use code snippets is available to

bootstrap new scripts without having to start from scratch. The library includes usage examples

and code templates for many common use cases, and can be easily extended by the developer.

Groovy reference guide

The Apache Groovy language is supported by a wide community of adopters worldwide. Groovy

is supported by the Apache Software Foundation: a significant amount of documentation and

examples are available online.

http://www.groovy-lang.org/ (http://www.groovy-lang.org/)

Velocity reference guide

The Apache Velocity engine powers the templating features in Content Script. Velocity is

supported by the Apache Software Foundation: lots of documentation and examples can be

found throughout the web and on the project’s website.

http://velocity.apache.org/ (http://velocity.apache.org/)

Writing and executing scripts

Content Script scripts are "document" class objects stored on Content Server. The primary

usage for a script is its execution. When you "execute" a script, you are basically

programmatically invoking a series of APIs that perform actions over Content Server's or other

systems' data. In the following paragraphs, we are going to analyze all the Content Script

architecture's elements and components that play a role in turning a textual file into an

actionable object.

As said, scripts are persisted as "documents" on Content Server. Whenever you execute a script

a component named Script Manager retrieves the script's last version and, either compiles it

(and caches the compiled version) or loads a pre-compiled version of it for execution. Scripts'

265 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

http://www.groovy-lang.org/
http://www.groovy-lang.org/
http://velocity.apache.org/
http://velocity.apache.org/

execution is managed by another component named Content Script Engine. The Content Script

Engine executes the script's code against the provided execution context (the execution context

is the "container" through which the script's code can access the Content Script's services,

environment variables, support variables, database, etc..). The internals of both the Script

Manager and the Script Engine are not relevant for the purpose of this manual and won't be

discussed.

API Services¶

Content Script API Service¶

Content Script APIs are organized in classes denominated services. Each Content Script API

service acts as a container for a set of homogeneous APIs (API releated to the same kind of

objects or features). Content Script APIs can be extended creating and registering new services

(/working/contentscript/sdk/#create-a-custom-service).

Content Script APIs are, in their most essential form, the methods exposed by the service

classes. In order to be recognize as a Content Script API a service class method must be

decoretad with the @ContentScriptAPIMethod annotation.

Content Script API Objects¶

Content Script APIs return or accept, as parameters, objects representing OTCS objects or

features. In Content Script, these objects are referred to as Content Script API objects. Content

Script API objects are active information containers. We define them active because they

expose APIs designed to manipulate the information stored in themselves.

In order to be recognize as a Content Script API Object a class must be decoretad with the

@ContentScriptAPIObject annotation.

When the script Execution Context is initialized by the Content Script engine, all registered API

services are injected into it. These services allow a Content Script to perform operations on

Content Server, to use internal utilities (such as PDF manipulation utilities or the templating

service), to access external systems and services, etc.

Here after are some of the main services that are currently available as part of Content Script

APIs.

Content Script API Services Interfaces

When working with Content Script APIs developers program against interfaces. As a matter of fact all Content Script

API services and objects implement one or more interfaces. Implementation classes can be easily distinguished

from their interfaces because their name ends with the "Impl" suffix.

266 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

/working/contentscript/sdk/#create-a-custom-service
/working/contentscript/sdk/#create-a-custom-service
/working/contentscript/sdk/#create-a-custom-service
/working/contentscript/sdk/#create-a-custom-service

API Service

Name
Description

Base API

Base API is constituted by methods and properties that are exposed directly

by each script. Some of the most important API are: logging, redirection (used

to redirect users navigation through a server side redirection i.e. http code

302, outputting HTML, XML, JSON and Files)

Core Services

admin

The admin service allows to programmatically perform administrative tasks.

With the admin service is it possible, among other things, to: perform XML

import/export operations, programmatically schedule/unscheduled Content

Script executions

collab

The collab service is the main access point to the Content Server

collaborative functionalities. With collab service is it possible, among other

things, to: create and manage projects, tasks and milestones, create and

manage discussions, list and manage users’ assignments

distagent

The distagent service provides functionality for: scheduling and unscheduling

of scripts, comprehensive configuration management. distagent supports the

definition of MapReduce type of Jobs (referred to as "Chain Jobs"), which

allows users to configure behaviors for each phase of the job:Split: Define

how to partition the data. Map: Specify the processing for each partition.

Reduce: Aggregate the results from the map phase. Finalize: Conclude the job

with any post-processing steps required.

docman

The docman service is the main access point to the Content Server Document

Management functionalities. With docman service it is possible, among other

things, to: create and manipulate documents and containers, access and

modify meta-data, access and modify object permissions, access volumes,

perform database queries, manipulate renditions and custom views, run

reports, consume OScript request handlers, programmatically import/export

content through Content Server native XML import/export feature

mail

The mail service allows to programmatically create/send and receive emails

from scripts. With the mail service is it possible, among other things, to:

create and send email message through multiple mailboxes, scan mailboxes

and retrieve incoming messages and attachments, create email messages

(both html and text messages are supported) with custom templates, send

email to internal users and groups, attach files and Content Server

documents to emails, configure multiple email service profiles to use

different IMAP/SMTP configuration at the same time

search

The search service allows to programmatically search over Content Server's

repository. With the search service is it possible, among other things, to:

easily build/execute complex search queries programmatically, easily build/

267 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

API Service

Name
Description

execute query based on categories attributes, retrieve search result with or

without pagination

users

The users service is the main collector for all APIs related to Content Server

users and groups. With users service is it possible, among other things, to:

create/modify/delete users and groups, impersonate different users, access

and modify user privileges, perform member searches

template

The template service can come in handy anytime you have to dynamically

create documents. With the template service is it possible, among other

things, to: evaluate documents and plain text strings as templates, replace

place holders and interpret template-expressions

workflow

The workflow service allows to programmatically manipulate workflows. With

the workflow service is it possible, among other things, to: start, stop,

suspend, resume, delete workflows, access and manipulate workflow and task

data, accept, complete, reassign workflow tasks, perform searches within

workflows and tasks, change workflows' and steps' title

Extensions

adlib

The adlib service allows to programmatically drive the AdLib rendition

engine. With adlib service it is possible, among other things, to: create jobs

for AdLib PDF Express Engine and fetch renditions results

amgui

The amgui service is designed to control the visibility of elements within the

Classic UI upon the execution of a content script, and it facilitates the

retrieval of format specifications for certain data types, such as dates. It also

handles the data structures inherent to the Classic UI, enabling the creation

of custom pages and reports. Furthermore, amgui is instrumental in generating

SmartView session tickets and provides programmatic access to the form

builder for server-side creation of Beautiful Webforms views.

amsui

The amsui service is primarily utilized by the Smart Pages module to ascertain

which enhancements, such as commands, actions, panels, and columns,

should be activated in the SmartView and their respective locations.

Additionally, amsui is responsible for the server-side rendering of Smart Pages

as well as generating Smart View session tickets, which are essential for the

integration of Smart View-related widgets within Beautiful WebForms and

Smart Pages.

aws

The aws service provides an interface for accessing and managing Amazon EC2

instances and S3 storage services. It enables the management of S3 buckets

and the orchestration of EC2 resources, streamlining cloud operations within

Amazon's extensive infrastructure.

blazon

268 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

API Service

Name
Description

The blazon service is designed to facilitate programmatic access to the

OpenText Blazon rendition engine, enabling developers to create and manage

rendition jobs. This service allows for the programmatic initiation of jobs and

their management in both synchronous (waiting for job completion) and

asynchronous modes. It grants full access to the Blazon API suite,

encompassing a comprehensive range of rendition and transformation

capabilities.

cache

The cache service provides interaction capabilities with the distributed

Memcache service, offering APIs to store and retrieve data applicable to

individual users or the entire Content Server population. This service

simplifies the integration within Content Script objects, such as CSNode nodes,

through a well-designed API set that streamlines cache usage in the context

of content management operations.

classification

The classification service is the main access point to the Content Server

classification features. With classification service is it possible, among other

things, to: access, apply, remove classifications from objects

core

The core service is tailored to offer simplified access to integrated core

services, including 'share' and other essential components. This service

streamlines the process of interfacing with the fundamental functionalities of

our system, enhancing developer efficiency and system integration.

docbuilder

The docbuilder service acts as a wrapper around an enhanced version of the

(Groovy Document Builder library (http://www.craigburke.com/document-

builder/)). This service facilitates the creation of both PDF and Word

documents, with the capabilities for generating Word documents being

significantly extended beyond those offered by the underlying library.

docx,xlsx

The docx/xlsx services allow to programmatically manipulate Microsoft Office

documents. With docx/xlsx services is it possible, among other things, to:

create and manipulate Word, PowerPoint and Excel documents, read and

write documents' properties

eng

The eng service offers access to a comprehensive set of APIs specific to

Extended ECM for engineering. This includes specialized functionalities for

managing CAD documents, handling transmittals, state flows, distribution

matrices, and other engineering-specific processes and data structures.

forms

The forms service is the main access to the Content Server web-forms

features. With forms service it is possible, among other things, to: create and

modify form and form template objects, read/modify/delete submitted form

records, submit new form records, export/import form records

ftp

269 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

http://www.craigburke.com/document-builder/
http://www.craigburke.com/document-builder/
http://www.craigburke.com/document-builder/
http://www.craigburke.com/document-builder/

API Service

Name
Description

The ftp service allows to interact with FTP services. With ftp service it is

possible, among other things, to: access, read, write files and folders on

multiple FTP servers

html

The html service provides a convenient set of server-side APIs for processing

HTML code. Key features include HTML to XHTML conversion, HTML

sanitization, XSS (Cross-Site Scripting) prevention, and HTML to PDF

conversion, all achievable without the need for additional software.

jdbc

The jdbc service is designed to offer a convenient method for integrating JDBC-

enabled data sources. It manages connections to multiple data sources and

connection pools to optimize performance. Additionally, this service includes

a layer of abstraction related to the specific pooling technology used,

enhancing its adaptability and ease of use in various database environments.

ldap

The ldap service is dedicated to managing LDAP (Lightweight Directory Access

Protocol) connections and operations, streamlining interactions with LDAP

servers and simplifying directory management tasks.

llm

The llm service is designed to integrate LLM (Large Language Model) based

services, specifically tailored for the context of the Module Suite application.

It offers a convenient set of APIs for use in scripts and widgets, facilitating

seamless integration. Currently, the service supports OpenAI-like APIs but is

architecturally agnostic, allowing compatibility with various underlying LLM

technologies.

notifications

The notifications service is designed to provide programmatic access to the

functionalities of the Notification Center. This enables developers to utilize it

for notifying users about events related to Module Suite applications,

enhancing user engagement and awareness.

oauth

The oauth service is specifically designed to simplify the access and usage of

resources and services protected by OAuth, streamlining authentication and

authorization processes for secure and efficient integration.

odata

The odata service is crafted to offer a convenient approach for both

consuming and producing REST APIs that are compliant with OData (Open

Data Protocol) standards, facilitating seamless interaction with OData-based

services. For more information on OData, you can visit the OData official

website (https://www.odata.org/).

pdf

The pdf service allows to programmatically manipulate PDF documents. With

pdf service is it possible, among other things, to: create and manipulate PDF

documents, write in overlay on PDFs, extract PDF pages as images, merge

PDFs, add watermarks to PDF documents, add barcodes (mono and bi-

dimensional) on PDF pages, remove print/modify permissions from PDF, add

270 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

https://www.odata.org/
https://www.odata.org/
https://www.odata.org/

API Service

Name
Description

PDFs in overlay to existing PDFs, extract images from pages or portion of

pages, read bar-codes form PDF’s pages, remove/insert pages

physobj

The physobj service is designed to facilitate the management of Physical

Objects nodes, providing tools and functionalities necessary for handling

these specific types of nodes effectively.

recman

The recman service is intended to provide access to Records Management APIs

and services, enabling the integration and utilization of records management

functionalities within the application framework.

rend

The rend service allows to programmatically invoke external rendition

engines. With rend service it is possible, among other things, to: transform on

the fly HTML pages to PDF documents, rend WebForms as PDFs, invoke

external services through an "all-purpose" generic rendition api

rmsec

The rmsec service is intended to provide access to APIs and services related to

Records Management Security and Security Clearance modules, enabling

streamlined integration and management of these critical security features.

rtl

The rtl (Right-to-Left) service features a set of APIs specifically designed to

simplify the creation of user interfaces that support Right-to-Left languages,

ensuring ease of use and inclusivity in global applications.

sap

The sap service allows to integrate Content Script with the well known SAP

ERP through RFCs. With sap service it is possible, among other things, to:

connect to multiple SAP systems through JCO APIs, invoke standard and

custom SAP functions to retrieve/update ERP information

sftp

The sftp service encompasses a suite of APIs tailored to simplify, optimize,

and enhance the efficiency of using SFTP (Secure File Transfer Protocol)

services in various applications.

sql

The sql service is designed to facilitate access to the platform's underlying

database. This service enables querying the database, managing the creation

of cursors, wrapping queries in transactions, and more. Additionally, it

features methods specifically aimed at simplifying the creation of SQL

queries for paginated data access, streamlining interactions with large

datasets.

sync

The sync service is designed to support the configuration of server-side

services and APIs necessary for Syncfusion-based widgets. This includes both

Beautiful WebForms and Smart Pages widgets, ensuring seamless integration

and functionality within these frameworks.

xecm
The xecm service is tailored to support the management and creation of new

Extended ECM connectors, as well as Extended ECM-related objects such as

271 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

API Service

Name
Description

Business Workspaces. Additionally, this service facilitates integration with the

Event Bots center, enhancing the capabilities of Extended ECM environments.

zip

The zip service is designed to provide robust functionalities for handling ZIP

file operations. This includes creating, extracting, and managing ZIP archives,

enabling efficient file compression and decompression within various

applications. The service is optimized for ease of use and seamless

integration, making it ideal for managing large datasets or grouped files in a

compressed format.

Execution context¶

Upon execution, every Content Script is associated to a Groovy binding. The binding can be

seen as a container for Objects that are part of the context in which the script is executed. We

make reference to this context as Content Script Execution Context or as Script Binding.

The Script Manager creates the most appropriate execution context on the basis of:

the script's code;

the system's current configuration;

the user context (user's permission, user's roles, etc..)

the cause that triggered the script's execution (direct invocation, scheduler, callback, etc..)

graph LR

 A[Script Source Code] --> B([Script Manager]);

 B --> |Compiles| C{{Script Compiled}};

 B --> | Assemble| D[Execution Context];

 C --> E([Script Engine]);

 D --> E;

 E --> |Executes the Script against the Context and generates| F[Result]

The Script Manager initializes the Script Binding before execution, injecting a set of objects,

which include:

API Services

APIs evolution

New service APIs are constantly added or updated with every subsequent release of Content Script. Optional APIs

are usually available through Content Script Extension Packages, and can be installed separately using the master

installer or the extension packages’ own installers.

•

•

•

•

•

272 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

Request variables

Support Objects

Support Variables

Additionally, a set of script utility methods are available in the Content Script (Base API). The

methods grant access to short-cuts for commonly used features or can pilot the execution

result.

Request variables¶

Request variables are variables injected into the execution context by the Script Manager

whenever a script is directly invoked as a result of a user's browser request.

Variable Description

params

A container for the Script’s request parameters. It’s a non-case sensitive map that

provide access to all the parameters passed to the script when executed.

In the params map are injected by default also the following variables (where

available):

myurl:The URL string used to execute the Content Script

node: the id of the Content Script object

useragent: the user's browser useragent

cookies: the user's browser cookies (as strings)

method: the HTTP verb used to request the script

lang: the user's locale

port: the HTTP port used to request the script

server: the HTTP host used to request the script

pathinfo: the request's URL path information

request A synonym for the previous variable (for backward compatibility)

Support variables¶

The number and the nature of the variables that are injected by the Content Script Engine

depends primarily from the mode through which the script has been executed. Content Script

scripts used for example to implement Node Callbacks or columns' Data Sources will have

injected in their Execution Context, respectively: the information regarding the Node that

triggers the event or the Node for which the column’s value is requested. Please refer to the

Content Script module online documentation for the name and type of the variables made

available in the Execution Context in the different scenarios. The following variables are always

injected.

•

•

•

•

•

•

•

•

•

•

•

•

273 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

Variable Description

img Content Server static resource context path (es. /img/).

webdav WebDav path

supportpath Content server support path

url Content Server CGI Context

SCRIPT_NAME A synonym for the previous variable (for backward compatibility)

csvars
A map containing the script's static variables (/working/contentscript/

otcsobj/#static-variables)

originalUserId
The ID of the user that triggered the execution of the Script (not considering

impersonation)

originalUsername
The username of the user that triggered the execution of the Script (not

considering impersonation)

Support objects¶

Support objects are instances of Content Script classes that the Script Manager creates,

configures and injects into every execution context in order to provide a simple mean for

accessing very basic or commonly required functionalities.

Variable Description

self An object representing the Content Script node being currently executed.

response
An instance of the ScriptResponse class that can be used to pilot the Content Script

output.

gui

A map of standard Content Server UI Components that can be enabled/disabled at

the time of rendering the page.

E.g.

gui.search = false

gui.sideBar = false

IMG

Please note that most of the time the img context variable ends with a trailing slash. To correctly use it as a

replacement variable in Content Script strings or velocity templates we suggest you to use the ${img} notation. E.g.:

""""""

•

•

Disable standard UI

To completely disable the standard Content Server UI use:

274 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

/working/contentscript/otcsobj/#static-variables
/working/contentscript/otcsobj/#static-variables
/working/contentscript/otcsobj/#static-variables
/working/contentscript/otcsobj/#static-variables

Variable Description

log

Each Content Script is associated with an instance logger that can be used to keep

track of the script execution. From within a script you can access the logger either

using the Script’s method getLog() or the shortcut log. The Content Script logging

system is based on a framework similar to the one used internally by OTCS. The

logger supports five different levels: trace, debug, info, warn, error. The default log

level for any script is: error this means that log messages at level for example

debug won’t be outputted in the ModuleSuite’s master log file (cs.log).

Logging level can be overridden per script basis through a dedicated administrative

console.

out A container for the script textual output

Base API¶

The Content Script "Base API" or "Script API" is constituted by methods and properties that are

exposed directly by each Content Script script.

API Description

asCSNode(Map)
An alternative to loading a node explicitly using one method out of:

docman.getNode, docman.getNodeByPath, docman.getNodeByNickname

asCSNode(Long)
An alternative to loading a node explicitly using the docman.getNode

method

redirect(String) A shortcut for sending a redirect using the response object

json(String) A shortcut for sending json using the response object

json(Map) A shortcut for sending json using the response object

json(List) A shortcut for sending json using the response object

sendFile(File[,String]) A shortcut for sending a file using the response object

success(String) A shortcut for setting the result of the script execution to "success"

runCS(Long)
A utility method to run a second Content Script (identified by ID)

within the same context

runCS(String)
A utility method to run a second Content Script (identified by

nickname) within the same context

gui.gui = false

275 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

API Description

runCS(String, Object[])

A utility method to run a second Content Script (identified by

nickname) using a cleaned execution context (the new execution

context shares with the caller’s context only the Content Script

services and the following variables: out, gui, response). In the sub-

script code the parameters that have been used to call the sub-script

can be accessed through the context variable “args”. Using this variant

it’s possible to intercept the result of the sub-script execution.

printError(Ex) A utility method to print out any exception raised by script’s execution

Examples

Usage example for runCS(String, Object[]) API

Usage example for asCSNode(...)API

Usage example for printError(...)API

//Parent Script
node = asCSNode(123456)
map = runCS(“mySubScript”, node, users.current)
out << map.user

//SubScript “mySubScript”
def retVal = [:]
retVal.name = args[0].name
retVal.user = args[1].with{
[

name:it.displayName,
id:it.ID

]
}
return retVal

// Load a CSNode
asCSNode(2000)

// A node can be loaded also by path or nickname
asCSNode(nickname:"MyNode")
asCSNode(path:"path:to:myNode")
asCSNode(id:2000) //=== asCSNode(2000)

try{
out << asCSNode(12345).name

}catch(e){
log.error("Error ",e) //Prints the full stack trace in the log file
printError(e) //Outputs the error

}

276 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

Script's execution¶

As shown in previous sections, the execution of Content Scripts can be triggered in different

ways. Here after are a few examples:

Direct execution by a user. This can happen, for example:

Using the Execute action in the object function menu or promoted object functions

While using the Content Script Editor, using the Execute or Execute in Modal

buttons (useful for debug and testing purposes, shown in the figure below)

A URL associated to the execution of a Content Script is invoked

A Content Script backed SmartUI widget is displayed

Direct execution by an external system

A URL associated to a Content Script REST API is invoked

Automatic execution by the system. This happens when:

The script is scheduled, at the configured execution time

A callback is configured, and the associated event is triggered

A Content Script Workflow step is configured as part of a workflow, and the step is

activated

A Content Script is configured as a Data Source for a WebReport, and the

WebReport is executed

A Content Script serves as a Data Source for a custom column

•

◦

◦

◦

◦

•

◦

•

◦

◦

◦

◦

◦

277 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

Script's output¶

As you can easily imagine by analysing the examples in the previous paragraph, the expected

result from the execution of a Content Script varies significantly from case to case.

When a user executes a Content Script directly from the Content Server user interface, he/she

would probably expect, in most of the cases, the result to be either a web page, a file to

download, or a browser redirection to a different Content Server resource.

When a remote system invokes a REST service API backed by a Content Script, it will most

probably expect structured data in return (probably XML or JSON data).

When a Content Script is executed as part of a workflow and the next step is to be chosen

depending on the execution outcome, the script will probably be expected to return a single

variable of some kind (a number or a string) or an indication that the execution was either

successful or encountered errors.

Content Script is flexible enough to cover all of these scenarios. The next section will include

examples of how to provide the different output necessary in each situation.

HTML (default)¶

The default behaviour in case of a successful script execution is to return the content of the

"out" container

JSON¶

JSON content can be easily returned

def contentToPrint = "This content will be printed in output"
out << contentToPrint

def contentToPrint = "This content will be printed in output"

//If the object returned by the script is a String, it will be printed in output
return contentToPrint

def builder = new JsonBuilder()
builder.companies {

company "AnswerModules"
country "Switzerland"
}

// Stream JSON content, useful for restful services
response.json(builder)

278 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

XML¶

XML content can be easily returned

Output of the above script:

Files¶

It is also possible to stream a file directly:

String jsonString = '{"key":"value"}'

// A string containing JSON data can be used
response.json(jsonString)

// or with the shorthand method
json(jsonString)
// or
json([[key:”value1”], [key:”value2”]])

gui.gui = false
gui.contentType = "application/xml"

def builder = new StreamingMarkupBuilder()
def parent = asCSNode(2000)
def nodes = parent.childrenFast //nodes are lazy loaded

def xml = builder.bind {
node(id:parent.ID, name:parent.name, isContainer:parent.isContainer){

children {
nodes.collect {

node(id:it.ID, name:it.name, isContainer:it.isContainer)
}

}
}

}
out << XmlUtil.serialize(xml)

<node id="2000" name="Enterprise" isContainer="true">
<children>

<node id="90064" name="Import" isContainer="true"/>
<node id="3270165" name="Training" isContainer="true"/>

</children>
</node>

Using gui support object for tuning script's output

Note the usage of gui.contentType in order to change the response’s “Content-Type” header.

// Stream a file as result of the execution
def res = docman.getTempResource("tempRes", "txt")
res.content.text = "Just a test"

279 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

Managed resources¶

In the context of developing against OTCS you will end up dealing with many different kind of

contents most of which are (or are strictly related with) files. In order to reduce the amount of

code needed to properly manage the disposition of temporary files, Content Script introduces

the concept of "managed resource" or CSResource. A CSResource is basically a wrapper around

the File class. CSResources are managed by the Content Script engine (no disposition required)

and are returned any time you want to access the content of a CSDocument or you fetch a

version from it (in these cases the CSResource will keep a reference, towards the source

CSDocument, through its "owner" property.

CSResources are first class citizens in Content Script. A CSResrouce can be for example

returned directly by a Content Script, triggering the download of the same.

def file = res.content
response.file(file)

// Stream a file as result of the execution
def res = docman.getTempResource("tempRes", "txt")
res.content.text = "Just a test"
def file = res.content
// Stream a file, specifying if it is a temporary file (will prevent deletion)
response.file(file, true)

// Stream a file as result of the execution
def res = docman.getTempResource("tempRes", "txt")
res.content.text = "Just a test"
def file = res.content
// or with the shortcut method
sendFile(file)

// Stream a file as result of the execution
def res = docman.getTempResource("tempRes", "txt")
res.content.text = "Just a test"

// or returing the CSResource directly
res.name = "My textFile.txt"
return res

Returning CSResource to trigger document download

Returning a CSResource from a script is the simplest way to stream out a file in this case is important to keep in

mind that the name of the downloaded file will be determined using the following rule:

if the property onwer of the CSResource is != null
then

use the name of the CSNode referenced by the CSResource’s owner property
else

use the CSResource's name property.
end

280 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

Redirection¶

In alternative, the response could contain a redirection to an arbitrary URL:

HTTP Code¶

In certain cases (e.g. when Content Script is used to extend OTCS’ REST APIs), it could be

necessary to explicitly control the "error" or "success" status of the script execution:

Advanced programming¶

Templating¶

Content Script features a flexible yet powerful templating engine based on Apache Velocity.

Evaluating a template is just a matter of invoking one of the evaluate methods available

through the template service.

Content Script velocity macros¶

Content Scripts defines a collection of macros that simplify the creation of OTCS UI embeddable

interfaces. A developer can create his own macros simply defining them in a z_custom.vm file

to be stored under the Content Script "Temp" folder (as defined in the Base Configuration page:

amcs.core.tempFilePath).

String url = "http://www.answermodules.com"

// Send a redirect using the response
response.redirect(url)

// or with the shortcut method
redirect(url)
// or
redirect “${url}/open/2000”
// or
redirect asCSNode(2000).menu.open.url

// Force the script execution result to be "success" using the response
response.success("This is a success message")
response.success("This is a success message",200)

// or with the shortcut method
success("This is a success message")
success("This is a success message",200)

// Force the script execution result to be "success"
response.error("This is an error message", 403)

// or with the shortcut method
error("This is an error message", 403)

281 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

Name and description Param
Type and

description
Usage example

csmenu(dataid[,nextUrl])

Creates the standard OTCS

context menu for the given

node (identified by its dataid)

dataid
Integer

node's dataid
#csmenu(2000)

nextUrl String

csresource(retList)

Loads static libraries from the

module support directory

resList

List

A list of

resources to

load. To be

chosen from:

query, jquery-

ui, jquery-ui-

css,

bootstrap,

bootstrap-css

#csresource([‘bootstrap’])

csform(script[,submit])

Creates the HTML form needed

to submit a request against the

executed Content Script

script

Integer

The objId of

the Content

Script you’d

like to execute
#@csform()

//Custom form inputs go

here

#end

submit

String

The value for

the label of

the submit

button. If null

the submit

button will

not be created

cstable(columns,sortColumn,

columnsClasses[,checkBoxes])

Creates an HTML table that fits

nicely with the standard OTCS UI

columns

List

The list of

column labels

#@cstable([‘First Name’],

{},{}, true)

//Your rows here

#end

sortColumns

Map

A map of

“Column

Label”,

“Property”

couples. The

Property is

used to build

282 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

Name and description Param
Type and

description
Usage example

sort links for

columns

columnsClasses

Map

A map of

“Column

Label”, “CSS

Classes”

couples. The

“CSS Classes”

are assigned

to the THs

tags.

checkBoxes

Boolean

If TRUE the

first column

of the table

will have

width 1%. To

be used to

insert a

checkboxes

column

cspager(skip,pageSize,

pagerSize,elementsCount)

Creates a pagination widget to

be used

skip

Integer

The index of

the element

to skip before

to start

rendering

rows

#cspager(0 25 3

$parent.childCount)

pageSize

Integer

The page size

(e.g. 25)

pagerSize

Integer

The number

of pages to

show in the

pager widget

elementsCount
Integer

The total

283 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

Name and description Param
Type and

description
Usage example

number of

elements

OScript serialized data structures¶

Content Script Java layer is tightly bound with Content Script Oscript layer, thus quite

frequently you will face the need of managing Oscript's serialized data structures obtained for

example querying the OTCS' database or from nodes' properties.

Oscript serializes its data in the form of Strings, for this reason Content Script enhances the

String class in order to provide a quick method for retrieving the corresponding Content

Script’s objects out of the OScript serialized representation.

Methods available on the String class are:

getDateFromOscript

getListFromOscript

getMapFromOscript

In the exact same way Content Script enhances its most common types (List, Map, Date, Long,

CSReportResult) in order to simplify the creation of the corresponding OScript serialized

representation.

The below table shows an usage example of the mentioned features:

Optimizing your scripts¶

Behaviors¶

You can use behaviors to decorate your scripts and let them implement a specific set of new

functionalities. Behaviors are to be considered similar to inheritance. A behavior is defined as a

•

•

•

284 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

collection (MAP) of closures and usually implemented in the form of a static class featuring a

getBehaviors method.

When you add a behavior to your script, all the closures that have been defined in the

behavior become part of your script thus becoming part of your script context.

Behaviors are resolved at compilation time, this means that they should be considered as a

static import.

Said otherwise, any changes applied directly on the script that implements your behaviors,

won't effect the scripts that have imported such behaviors. In order to update the imported

behaviors you have to trigger the re-compilation of the script that is importing them (target

script).

BehaviorHelper¶

In order to add behaviors to a script you shall use the BehaviourHelper utility class.

The BehaviourHelper utility class, features three methods:

Through BehaviourHelper you can add, remove or check for the presence of an associated

behavior.

Behaviors are of great help when it comes to structure your code base, optimize executions

and reduce boilerplate code.

Module Suite comes with few predefined behaviors, you can easily implement yours by defining

a map of closures to be passed to the above BehaviourHelper utility class.

Default Behaviours¶

The AMController behavior has been designed to simplify the creation of form-based

application on Content Server.

It features the following closures:

start: this closure takes no parameters, and it is used to dispatch incoming requests. It

creates (if not already provided) an app object to be made available in the execution

context. It analyzes the request's pathinfo, to extract the information required to route

towards a registered closure. Rebuilds any Beautiful WebForm object found in the

request.

@ContentScriptAPIMethod (params = ["script" , "behaviours"], description = "Add behaviours to a Content Script")
public static void addBeahaviours(ContentScript script, Map<String, Closure> closures)

@ContentScriptAPIMethod (params = ["script" , "behaviours"], description= "Remove behaviours from a Content Script ")
public static void removeBehaviours(ContentScript script, String... closures=null)

@ContentScriptAPIMethod (params = ["script" , " behaviour "], description= " Determine if the script already has the specified behaviour ")
public static void hasBehaviour(ContentScript script, String name)

1.

285 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

This closure should be the last instruction of your script.

When directly executed (http://my.server/otcs/cs.exe?

func=ll&objId=12345&objAction=Execute&nexturl=.. or http://my.server/otcs/cs.exe/open/12345) the

script above will output:

Hello world from Module Suite

when executed using: http://my.server/otcs/cs.exe/open/12345/details it will output

The script ID 12345

when executed as: http://my.server/otcs/cs.exe/open/12345/details/2000 it wll output:

The script ID 2000

In other words the requested path will always been interpreted using the follow schema:

http://my.server/otcs/cs.exe/open/12345/closurename/param1/param2/param3 where closurename

will be defaulted to "home" if not found in the path.

loadForm(def formID, def amSeq=0): loads a Form data object, setting

form.viewParams.contentScript = params.node (so that if the form data object will be

used with a BeautifulWebForm view the form will submit on this very same content

script) and form.viewParams.amapp_Action = params.pathinfo.

submitForm(def form): validates the form data object and performs the submit

(executing pre-submit and on-submit scripts if defined)

renderForm(def form, def context=null): renders the form either in the script context or

in the specified context

app = [:]
app.product ="Module Suite"

if(!BehaviourHelper.hasBehaviour(this, "start")) {
BehaviourHelper.addBeahaviours(this, AMController.getBehaviours())

}

home = {
out << "Hello world from ${app.product}"

}

details = { String id = null->
out << "This script ID ${id?asCSNode(id as int).ID:self.ID}"

}
start()

2.

3.

4.

286 Writing and executing scripts

Copyright © 2013-2025 AnswerModules Sagl

Working with workflows

Content Script Workflow Steps¶

The Content Script Extension for Workflows is automatically available upon installation of the

Content Script module. The extension enables a new workflow package in Workflow maps

(Content Script package) and custom type of workflow step (Content Script step).

Content Script Package¶

The Content Script package must be enabled in order to use Content Script steps within a

workflow map.

Once enabled, it will be possible to define the set of Content Script objects that will be

available for inclusion in the current workflow map.

Content Script Workflow Step¶

Content Scripts enabled in the workflow package can be used in the workflow map as Content

Script steps.

287 Working with workflows

Copyright © 2013-2025 AnswerModules Sagl

Here below is an example of a Content Script step performing some basic operations on the

current workflow task.

// Fetch the menu in its original format
def workflowStatus = workflow.getWorkflowStatus(workID, subWorkID)
def workflowTask = workflow.getWorkFlowTask(workID, subWorkID, taskID)
def allTasks = workflowStatus.tasks

// Edit Workflow Attribute values
def workflowAttributes = workflowStatus.getAttributes()
workflowAttributes.setAttributeValues("Customer", "ACME inc.")
workflowAttributes.setAttributeValues("Country", "Switzerland")
workflow.updateWorkflowData(workID, subWorkID, [workflowAttributes]) //Updates attributes

// Edit Workflow Attribute values - different flavour
try{

def atts =workflowStatus.getAttributes()

// This API is not just for reading values...
// Set the value
atts.data.Customer = "ACME inc."
atts.data.Country = "Switzerland"

workflowStatus.updateData() // COMMIT CHANGES

}catch(e){
log.error("Unable to access workflow's attributes ",e)

}

// Access a workflow form
def form = forms.getWorkFlowForm(workflowTask, "Form")
form.myattribute.value = "A new value"
forms.updateWorkFlowForm(workflowTask, "Form", form, false)

// Update Task's title
workflow.updateTaskTitle(

workID,
subWorkID,
taskID,
"Title with form field: ${form.myattribute.value}"

)

// Access a workflow form and workflow attributes - different flavour

288 Working with workflows

Copyright © 2013-2025 AnswerModules Sagl

In the above example, the script is:

fetching information related to the current workflows status and tasks

performing changes on some workflow attributes

fetching and updating a workflow form

adding attachments to the workflow attachments folder

Note that the above script makes use of some context variable available in the execution

context that are peculiar only to workflow steps. The variables are:

Expression type Type Description

workID Integer The workflow ID

subWorkID Integer The subworkflow ID

taskID Integer The current task ID

The above variables can be used in combination with the workflow service API to access all the

information related to the current workflow. See the complete API documentation for a

complete list of operations available on workflow instances.

Workflow routing¶

Content Script execution outcome, which MUST always be a String, can be interpreted in

different ways, and used to route the next steps of the workflow.

//Mapping
node = asCSNode(path:"Some Path:On Content Server:Node")

workflowStatus.attributes."Account Folder" = node.ID
workflowStatus.forms.Form.data."Lead Owner" = node.Account."Account Manager"
workflowStatus.forms.Form.data."Company" = node.Account."Company name"
workflowStatus.forms.Form.data."First Name" = node.Account."Contacts"."First Name"
workflowStatus.forms.Form.data."Last Name" = node.Account."Contacts"."Last Name"
workflowStatus.forms.Form.data."Email" = node.Account."Contacts"."Email"
workflowStatus.forms.Form.data."Addresses"."Street" = node.Account."Addresses"."Street"
workflowStatus.forms.Form.data."Addresses"."City" = node.Account."Addresses"."City"
workflowStatus.forms.Form.data."Addresses"."Zip Code" = node.Account."Addresses"."ZipCode"
workflowStatus.forms.Form.data."Addresses"."Country" = node.Account."Addresses"."Country"
workflowStatus.updateData() // COMMIT CHANGES

// Updating Workflow title
workflow.updateWorkFlowTitle(

workID,
subWorkID,
"Company: ${workflowStatus.forms.Form.data."Company" as String}"

)

// Add documents to the attachments folder (an empty spreadsheet in this case)
def workflowAttachments = workflowStatus.getAttachmentsFolder()
workflowAttachments.createDocument("Spreadsheet", xlsx.createSpreadsheet().save())

•

•

•

•

289 Working with workflows

Copyright © 2013-2025 AnswerModules Sagl

The following routing expression types are currently supported:

Expression type Values Description

Content Script Outcome
Success or

Error
Error in case the script returns an exception

Content Script Outcome

(Integer)

Any Integer

value

Supports evaluation based on numeric

comparison

Content Script Outcome

(String)

Any String

value
Evaluation based on string comparison

290 Working with workflows

Copyright © 2013-2025 AnswerModules Sagl

Synchronous and Asynchronous callbacks¶

Since version 1.5, Content Script supports the definition of Event Callbacks: in response to

specific actions performed on Content Server, it is possible to execute one or more Content

Scripts.

The callbacks can be:

synchronous: the script is executed within the same transaction as the triggering action.

Synchronous callbacks are configured through the CSSynchEvents container.

asynchronous: the triggering action completes normally. The callback script is executed

later on. Asynchronous callbacks are configured in the CSEvents container.

The definition of Content Script callbacks is based on a convention over configuration

approach. In order to register a new callback, a script should be placed somewhere in a nested

container structure in the CSSynchEvents or CSEvents container, following a specific naming

convention.

The first level under the container indicates the object or object subtype to which the callbacks

are bound.

The naming convention is one of the following:

D<nodeID>

S<subtype>

where nodeID identifies the node unequivocally and subtype identifies a specific object

subtype on Content Server.

•

•

Since synchronous callbacks are performed in the same transaction as the event, any errors that occur during

script execution will cause the transaction to roll back.

Performance

Since synchronous callbacks are executed in the same transaction as the event, make sure that any action

performed by the script requires a reasonable time span for execution. Otherwise, the user experience could be

affected negatively.

Synchronous Callbacks are disabled by default

Please read the instruction below about how to enable them.

•

•

291 Synchronous and Asynchronous callbacks¶

Copyright © 2013-2025 AnswerModules Sagl

Examples:

D2000 will intercept events on the Enterprise Workspace

S144 will intercept event on Document type objects (subtype: 144)

The second level should be once again a container and specifies the event type. The name of

this container should be one of:

ChildNodeAdded

ChildNodeCreate

NodeAddVersion

NodeAddVersionPre

NodeCopy

NodeCreate

NodeCreatePre

NodeMove

NodeRename

NodeUpdate

NodeUpdateCategories

Inside the Event Type container it is possible to place one or more Content Scripts that will be

invoked when the callback is triggered.

•

•

•

•

•

•

•

•

•

•

•

292 Synchronous and Asynchronous callbacks¶

Copyright © 2013-2025 AnswerModules Sagl

In the following tables we present a summary of the supported Events and the information

regarding the variables that are injected in the Execution Context, automatically by the

framework, for each event. These variables can be useful to implement the required business

logic within the Script.

Event Name
Execution Context

Param
Type Description

All callbackID String

The CSEvent Name

(NodeAddVersion,

NodeUpdateCategories,

etc)

eventSourceID Integer

The dataid of the

node that triggered

the event

NodeAddVersion nodeID Integer

The document that

has received the new

version

NodeAddVersionPre nodeID Integer

The document that

has received the new

version

NodeUpdateCategoriesPre nodeID Integer The updated node’s id

addedCategories List
The list of added

categories

deletedCategories List
The list of removed

categories

changes ChangeAssoc

The list of applied

attributes changes.

(SEE THE TABLE BELOW

FOR DETAILS)

NodeUpdateCategories nodeID Integer The updated node’s id

addedCategories List
The list of added

categories

deletedCategories List
The list of removed

categories

changes ChangeAssoc
The list of applied

attributes changes.

The Module Suite Administration pages feature a Manage Callbacks tool that can be used to verify, at any time, all

the callbacks that are bound to a specific object or subtype.

293 Synchronous and Asynchronous callbacks¶

Copyright © 2013-2025 AnswerModules Sagl

Event Name
Execution Context

Param
Type Description

(SEE THE TABLE BELOW

FOR DETAILS)

NodeCopy nodeID Integer
The id of the node that

has been copied

newNodeID Integer
The newly created

node’s id

ChildNodeAdded nodeID Integer

The id of the node

where a new content

has been added

newNodeID Integer
The newly created

node’s id

NodeCreatePre newNodeID Integer
The newly created

node’s id

nodeID Integer
The newly created

node’s id

addedCategories List
The list of added

categories

deletedCategories List
The list of removed

categories

changes ChangeAssoc

The list of applied

attributes changes.

(SEE THE TABLE BELOW

FOR DETAILS)

NodeCreate newNodeID Integer
The newly created

node’s id

nodeID Integer
The newly created

node’s id

addedCategories List
The list of added

categories

deletedCategories List
The list of removed

categories

changes ChangeAssoc

The list of applied

attributes changes.

(SEE THE TABLE BELOW

FOR DETAILS)

294 Synchronous and Asynchronous callbacks¶

Copyright © 2013-2025 AnswerModules Sagl

Event Name
Execution Context

Param
Type Description

ChildNodeCreatePre nodeID Integer

The id of the node

where a new content

has been added

newNodeID Integer
The newly created

node’s id

addedCategories List
The list of added

categories

deletedCategories List
The list of removed

categories

ChildNodeCreate nodeID Integer

The id of the node

where a new content

has been added

newNodeID Integer
The newly created

node’s id

addedCategories List
The list of added

categories

deletedCategories List
The list of removed

categories

changes ChangeAssoc

The list of applied

attributes changes.

(SEE THE TABLE BELOW

FOR DETAILS)

NodeMove nodeID Integer The moved node’s id

NodeRename nodeID Integer The renamed node’s id

oldName (Can be

null)
String

The previous node’s

name

newName String
The current node’s

name

NodeUpdate nodeID Integer The updated node’s id

NodeRenditionNew nodeID Integer

The node's id that

received the new

rendition

BusinessWorkspaceCreate newNodeID Integer

The newly created

Business Workspace's

id

295 Synchronous and Asynchronous callbacks¶

Copyright © 2013-2025 AnswerModules Sagl

Event Name
Execution Context

Param
Type Description

nodeID Integer
The newly created

node’s id

BusinessWorkspaceUpdate nodeID Integer

This callback is called

when the business

workspace update is

about to complete.

BusinessWorkspaceChangeReference nodeID Integer

This callback is called

in the context of

workspace reference

being updated (as in

add or change).

BusinessWorkspaceRemoveReference nodeID Integer

This callback is called

in the context of

workspace reference

being removed.

BusinessWorkspaceRelationsUpdate nodeID Integer

This callback is called

in the context of

workspace reference

being updated (as in

add or change).

updateInfo Map

A map with keys:

childrenAdded,

childrenRemoved,

parentsAdded,

parentsRemoved

The following table is related to the structure of the ChangeAssoc object, necessary to manage

NodeUpdateCategories type events.

Property name Type Description

attributePath List
The path of the modified

attribute inside the category.

{“Name”,0}: represents the path to the first value of

the attribute “Name”

{“Name”,1}: represents the path to the second value

of the attribute “Name”

{“Addresses”, 2, “ZipCode”, 0}: represents the path to

the first value of the attribute ZipCode in the third

296 Synchronous and Asynchronous callbacks¶

Copyright © 2013-2025 AnswerModules Sagl

Property name Type Description

occurrence of the Set attribute Addresses

oldValue Dynamic
The previous attribute’s

value

newValue Dynamic The present attribute’s value

categoryName String The category name

Synchronous Callbacks Configuration¶

Default Settings¶

Synchronous callbacks can significantly impact system performance. Therefore, they are

disabled by default to ensure system stability.

Enabling Synchronous Callbacks¶

To enable synchronous callbacks, set the following property: amcs.core.callbackSynchEventsEnabled

= true

User-Specific Configuration¶

In certain scenarios, it's beneficial to exclude specific users from synchronous callbacks,

especially those performing bulk jobs. This exclusion helps in maintaining system efficiency

and avoiding unnecessary load.

Specifying Excluded Users¶

To exclude users, add their IDs to the amcs.core.callbacksUserIDs property.

Multiple user IDs can be specified, separated by commas.

Example format: 12345,6789

•

•

•

297 Synchronous and Asynchronous callbacks¶

Copyright © 2013-2025 AnswerModules Sagl

InterruptCallbackException - transaction roll-

backed¶

There are cases in which you might want your synchronous callback to cause the roll-back of

the original event transaction (to prevent its completion), e.g. you implemented a synch-

callback triggered by the NodeCreate event and you want to use it to ensure that the node that

is going to be created respects some specific business rule, for example, it's a PDF document.

In this cases, you can just raise an un-catched InterruptCallback exception from within your

callback script.

E.g.

log.error("Running ${self.parent.parent.name}:${self.parent.name}:${self.name} for $nodeID")
out << "This is the mother of all failures..."
throw new InterruptCallbackException("New Callback Exception...")

Returning meaningful messages to your users

To return a message to your users you have just to add an output statement to your script.

298 Synchronous and Asynchronous callbacks¶

Copyright © 2013-2025 AnswerModules Sagl

Extending REST APIs

Extending REST APIs:CSServices¶

The CSServices container is dedicated to Content Scripts that should be made available as

REST services.

The name of scripts placed in this container can be used to invoke the script directly through

two dedicated HTTP endpoint (amcsapi, amcsapi/v1)

The amcsapi can be used to consume the REST service from within the Content Server GUI (it

will in fact use the standard Content Server authentication mechanism to authenticate the

user).

On the other hand the amcsapi/v1 can be used to consume the REST service using the Content

Server REST Apis authentication token (https://developer.opentext.com/webaccess/

#url=%2Fawd%2Fresources%2Farticles%2F6102%2Fcontent%2Bserver%2Brest%2Bapi%2B%2Bquick%2Bstart%2Bguide&tab=501).

Basic REST service¶

As a very simple example, the script getuserbyname can be invoked by using an URL built as

follows:

http://localhost/otcs/cs.exe/amcsapi/getuserbyname

http://localhost/otcs/cs.exe/amcsapi/v1/getuserbyname

Additional parameters can be passed to the service, and will be available in the Content Script

(via the params object). For example, invoking the previous script as:

http://localhost/otcs/cs.exe/amcsapi/getuserbyname?term=admin

the REST service framework will run the backing getuserbyname script adding the value of the

GET parameter term in the params container variable. In the script, the value will be accessible

by simply using the expression:

When invoked, unless otherwise specified (for example, in the script’s “Run As” configuration), each script is

executed as the currently logged in user.

params.term

299 Extending REST APIs

Copyright © 2013-2025 AnswerModules Sagl

https://developer.opentext.com/webaccess/#url=%2Fawd%2Fresources%2Farticles%2F6102%2Fcontent%2Bserver%2Brest%2Bapi%2B%2Bquick%2Bstart%2Bguide&tab=501
https://developer.opentext.com/webaccess/#url=%2Fawd%2Fresources%2Farticles%2F6102%2Fcontent%2Bserver%2Brest%2Bapi%2B%2Bquick%2Bstart%2Bguide&tab=501
https://developer.opentext.com/webaccess/#url=%2Fawd%2Fresources%2Farticles%2F6102%2Fcontent%2Bserver%2Brest%2Bapi%2B%2Bquick%2Bstart%2Bguide&tab=501
https://developer.opentext.com/webaccess/#url=%2Fawd%2Fresources%2Farticles%2F6102%2Fcontent%2Bserver%2Brest%2Bapi%2B%2Bquick%2Bstart%2Bguide&tab=501
https://developer.opentext.com/webaccess/#url=%2Fawd%2Fresources%2Farticles%2F6102%2Fcontent%2Bserver%2Brest%2Bapi%2B%2Bquick%2Bstart%2Bguide&tab=501

Behaviour based REST services¶

Since version 1.7.0, Content Script supports a “behaviour” based approach for the creation of

REST services. This allows for an easier set-up of new services, enhance maintainability and

better compliance with REST service commonly used conventions and de-facto standards.

A skeleton for a behaviour-based REST service is shown below.

A REST service can specify multiple operations, identified with behaviours. Each behaviour is

implemented as a closure. By convention, the home behaviour is bound to the root of the API.

Service example¶

log.debug("Content Script REST Service {} - START", self?.name)

section = { String elemID=null, String method=null, String param=null ->
try {

if(elemID){
switch(params.method){

case "GET": //Read
json(

[
operation:"section",
elemID:elemID,
method: method,
param: param

]
)
return;
default :
response.error("Unsupported operation",500)
return

}
}else{

json(
[

operation:"section",
elemID:elemID,
method: method,
param: param

]
)
return

}
} catch(e){

log.error("An error has occurred while managing the request", e)
json([error:"Unable to complete your request $e?.message"])

}
}

//Default service method
home = { String elemID ->

try {
//Single element
if(elemID){

switch(params.method){ //request verb
// CRUD operations
case "POST": //Create
//Your code here...
break;
case "GET": //Read
json(["elemID":elemID])

300 Extending REST APIs

Copyright © 2013-2025 AnswerModules Sagl

Sample invocation path Operation Parameters passed to the closure

/training home elemID = null

/training/2000 home elemID = “2000”

/training/2000/section section

elemID = “2000”

method = null

param =null

/training/2000/section/100 section

elemID = “2000”

method = “100”

param =null

/training/2000/section/100/list section

elemID = “2000”

method = “100”

param =“list”

/training/section/2000 section

return;
case "PUT": //Update
//Your code here...
break;
case "DELETE": //Delete
//Your code here...
break;

}
}else{

switch(params.method){ //request verb
// CRUD operations
case "POST": //Create
//Your code here...
break;
case "GET": //Read
//Your code here...
break;
case "PUT": //Update
//Your code here...
break;
case "DELETE": //Delete
//Your code here...
break;

}
}
// Default return
json([ok:true])

} catch(e){
log.error("An error has occurred while managing the request", e)
json([error:"Unable to complete your request $e?.message"])

}
}

if(!BehaviourHelper.hasBehaviour(this, "start")) {
BehaviourHelper.addBeahaviours(this, AMRestController.getBehaviours())

}

return start()

log.debug("Content Script REST Service {} - END", self?.name)

301 Extending REST APIs

Copyright © 2013-2025 AnswerModules Sagl

Sample invocation path Operation Parameters passed to the closure

elemID = “2000”

method = null

param =null

/training/section/2000/100 section

elemID = “2000”

method = “100”

param =null

/training/section/2000/100/list section

elemID = “2000”

method = “100”

param =“list”

Extending Content Script

Create a Custom Service¶

One of the most important feature of ModuleSuite is its extensibility. ModuleSuite has been in

fact designed in order to let you extend it, creating new services, new components, widgets,

code snippets etc..

Creating a new service it's particularly helpful when it comes to integrate other services and/or

systems, or to leverage existing libraries to extend the Content Server capabilities. Creating

your extension in the form of a new Content Script service you will automatically benefit from

all the existing ModuleSuite features such as, for example, the full support of the Content

Script Editor.

New services can be easily created by using the Content Script SDK. The Content Script SDK is a

toolkit that can be used by developers to create custom Content Script services. Services

created with the SDK can be seamlessly deployed in the target Content Server instance, and be

accessible within Content Script code.

The suggested way to setup and use the Content Script SDK is by using the well-known Eclipse

IDE.

The SDK is shipped in the form of an Eclipse Maven project. The project includes all the

interfaces required for integration within Content Script, and can be used as a template to

create a custom service.

Content Script SDK setup¶

Download Eclipse Luna SR2 (https://eclipse.org/downloads/packages/eclipse-ide-java-

developers/lunasr2c (https://eclipse.org/downloads/packages/eclipse-ide-java-

developers/lunasr2c)*) *

1.

302 Extending Content Script

Copyright © 2013-2025 AnswerModules Sagl

https://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr2c
https://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr2c
https://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr2c
https://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr2c
https://eclipse.org/downloads/packages/eclipse-ide-java-developers/lunasr2c

Run Eclipse. Use the Help > Install new software option to install some required

additional components

Install Maven2Eclipse components

add the update site (http://download.eclipse.org/technology/m2e/releases/

(http://download.eclipse.org/technology/m2e/releases/))

install the components: m2e - Maven integration for Eclipse, m2e - slfj over

logback logging (Optional)

2.

3.

1.

2.

303 Extending Content Script

Copyright © 2013-2025 AnswerModules Sagl

http://download.eclipse.org/technology/m2e/releases/
http://download.eclipse.org/technology/m2e/releases/
http://download.eclipse.org/technology/m2e/releases/
http://download.eclipse.org/technology/m2e/releases/

In your workspace folder, unpack the contents of the Content Script SDK archive

Import the unpacked project within your new Eclipse environment.

4.

5.

304 Extending Content Script

Copyright © 2013-2025 AnswerModules Sagl

305 Extending Content Script

Copyright © 2013-2025 AnswerModules Sagl

Navigate to the workspace folder and select the project directory, the project is identified

by its pom.xml (Project Object Model) file. The Content Script SDK pom should appear in

the listing.

Once selected, proceed with import.

Review the imported SDK project layout6.

306 Extending Content Script

Copyright © 2013-2025 AnswerModules Sagl

307 Extending Content Script

Copyright © 2013-2025 AnswerModules Sagl

Build the project using the Maven menu options.

Deploy the newly created service on your Content Server instance. The main artifact

produced by a project build is a jar file containing the service classes. In order to install

the custom services to the target OTCS instance, copy the jar file to: <OTCS_Home>/

module/anscontentscript_X_Y_Z/amlib

7.

8.

308 Extending Content Script

Copyright © 2013-2025 AnswerModules Sagl

Each service might load as many dependencies as it needs, service’s dependencies are

loaded with an high isolation level, thus several services might load the same

dependency (same library) or even load different version of the same dependency

(different version of the same library). Service’s dependencies are loaded by default from

a folder stored under /module/anscontentscript_X_Y_Z/amlib having the same name as

the service identifier. Service’s dependencies can be specified using the POM file you can

find in the SDK project. E.g.

Upon build, an additional target folder will include all direct and indirect dependencies

needed at runtime:

<dependency>
<groupId>berkeleydb</groupId>
<artifactId>berkeleydb</artifactId>
<version>1.5.1</version>

</dependency>

309 Extending Content Script

Copyright © 2013-2025 AnswerModules Sagl

content-script-services.xml – Service description file¶

In order to let ModuleSuite be aware of your new service you have to properly describe it using

the content-script-service.xml file. This xml files allows you not just to describe your service

but also to provide some basic configuration for it.

The base structure of the file is as follows:

Using a single Content Scrip SDK project you can define as many services as you want. Each

service should have its own service element descriptor in the description file. The mandatory

attributes for the service element are: the service unique identifier (id) and the service

implementation class (class). The extRepoId attribute is used if multiple services are defined in

the same description file in order to inform ModuleSuite from where services’ dependencies

shall be loaded (in the above example both the services are loading their own dependencies

from the same repository).

Content Script Extension for SAP¶

Using the extension¶

This section describes how to use the SAP API to retrieve data from the SAP system. The main

Script API Object you are going to use is the SAPFunction object, which can be obtained from

the sap service by calling sap.getFunction Script API Method. The SAPFunction object works the

same for either an existing xECM connection or for a custom connection.

<?xml version="1.0" encoding="UTF-8" ?>
<services>
<service id="sample" extRepoId="sample" class="com.answer.modules.sample.SampleService">
<properties>
<property name="sample.aProperty"

description="A property with a default value (default: 'default')">default</property>
<property name="sample.aSecret" type="hidden"

description="A property with a hidden value"></property>
<property name="sample.aNumber"

description="A property with a numeric value (default: 1)">1</property>
</properties>

</service>
<service id="anotherSample" extRepoId="sample" class="com.answer.modules.sample.ASampleService">
<properties>
<property name="sample.aProperty"

description="A property with a default value (default: 'default')">default</property>
<property name="sample.aSecret" type="hidden"

description="A property with a hidden value"></property>
<property name="sample.aNumber"

description="A property with a numeric value (default: 1)">1</property>
</properties>

</service>
</services>

310 Content Script Extension for SAP¶

Copyright © 2013-2025 AnswerModules Sagl

Function's input parameters can be specified using the setImpParam method:

To invoke a function in the target system and retrieve the function's result just call the execute

method of the SAPFunction object:

Function execution results¶

The extension package features several options that help you in properly manage a function's

execution result:

Function export parameter is in Table form Get content of table parameter of function

execution result, i.e. as SapTable Script API Object. See sample code below

def sapfunc = sap.getFunction("BAPI_TIMEQUOTA_GETDETAILEDLIST", "PRD")

def sapfunc = sap.getFunction("BAPI_TIMEQUOTA_GETDETAILEDLIST", "PRD")
sapfunc.setImpParam("EMPLOYEENUMBER", cid)
sapfunc.setImpParam("DEDUCTBEGIN", now)
sapfunc.setImpParam("DEDUCTEND", now)

def sapfunc = sap.getFunction("BAPI_TIMEQUOTA_GETDETAILEDLIST", "PRD")
sapfunc.setImpParam("EMPLOYEENUMBER", cid)
sapfunc.setImpParam("DEDUCTBEGIN", now)
sapfunc.setImpParam("DEDUCTEND", now)
sapfunc.execute()

1.

//result as SAPTable class
def sapTblQuote = sapfunct.table("ABSENCEQUOTARETURNTABLE",

"QUOTATYPE",
"QUOTATEXT",
"DEDUCTBEGIN",
"DEDUCTEND",
"ENTITLE",
"DEDUCT",
"ORDERED",
"REST",
"REST_FREE",
"TIMEUNIT_TEXT")

def quote = sapTblQuote.rows.collect{
[

"quotaType":it.QUOTATYPE,
"quotaText":it.QUOTATEXT,
"begin":it.DEDUCTBEGIN,
"end":it.DEDUCTEND,
"entitle":it.ENTITLE,
"deduct":it.DEDUCT+it.ORDERED,
"rest":it.REST_FREE

]}

311 Content Script Extension for SAP¶

Copyright © 2013-2025 AnswerModules Sagl

Please refer to SAPTable Script API Object for more detailed description of available methods

and options.

Function export parameter is in Structure form Get content of a structure export

parameter as a SapStructure Script API Object. See sample code below

Please refer to SapStructure class API for more detailed description of available methods and

options.

Get generic value of export parameter To get value of function export parameter you can

use gertExportParam() method. Please see sample code below:

All necessary conversions between Java and ABAP data types are done automatically.

Sample code listing below contains sample usage scenarios of SAP integration extension:

1.

def cumulateSAPStctr = sapfunct.table("CUMULATEDVALUES",
"QUOTATYPE",
"QUOTATEXT",
"ENTITLE",
"DEDUCT",
"ORDERED",
"REST",
"REST_FREE",
"TIMEUNIT_TEXT")

//optionally you can call cumulateSAPStctr.getRows("QUOTATYPE","QUOTATEXT",...).collect()
def cumulate = cumulateSAPStctr.rows.collect{

[
"quotaType":it.QUOTATYPE,
"quotaText":it.QUOTATEXT,
"entitle":it.ENTITLE,
"deduct":it.DEDUCT+it.ORDERED,
"rest":it.REST_FREE

]}

1.

def empldet = sap.getFunction("Z_HR_MSD_RFC01_AD_EMPL_SINGLE", "PRD")
.setImpParam("I_PERNR", cid).execute()
.getExportParam("E_AD_EMPL")

// BAPI Function
getSAPHRData = {

cid ->
def now = new Date()
def sapfunct = sap.getFunction("BAPI_TIMEQUOTA_GETDETAILEDLIST", "PRD")

.setImpParam("EMPLOYEENUMBER", cid)

.setImpParam("DEDUCTBEGIN", now)

.setImpParam("DEDUCTEND", now)

.execute()
def quote = sapfunct.table("ABSENCEQUOTARETURNTABLE",

"QUOTATYPE",
"QUOTATEXT",
"DEDUCTBEGIN",
"DEDUCTEND",
"ENTITLE",
"DEDUCT",
"ORDERED",
"REST",

312 Content Script Extension for SAP¶

Copyright © 2013-2025 AnswerModules Sagl

SAP service APIs¶
Method Summary

SapFunction
getFunction(String functionName, String destinationName)

Get a SAP function for the specified destination

SapFunction
getFunction(String functionName)

Get a SAP function for the default destination ('default')

API Objects¶

SapField¶

Method Summary

SapField
setValue(Object value)

"REST_FREE",
"TIMEUNIT_TEXT").rows.collect{

["quotaType":it.QUOTATYPE, "quotaText":it.QUOTATEXT, "begin":it.DEDUCTBEGIN, "end":it.DEDUCTEND, "entitle":it.ENTITLE, "deduct":it.DEDUCT+it.ORDERED, "rest":it.REST_FREE]
}
def cumulate = sapfunct.table("CUMULATEDVALUES",

"QUOTATYPE",
"QUOTATEXT",
"ENTITLE",
"DEDUCT",
"ORDERED",
"REST",
"REST_FREE",
"TIMEUNIT_TEXT").rows.collect{

["quotaType":it.QUOTATYPE, "quotaText":it.QUOTATEXT, "entitle":it.ENTITLE, "deduct":it.DEDUCT+it.ORDERED, "rest":it.REST_FREE]
}
return ["quote":quote, "cumulate":cumulate]

}

quotaMap = getSAPHRData(cid)

out << template.evaluateTemplate("""

<div>
 #@cstable(['Quote', 'Begin', 'End', 'Entitle','Deduction', 'Rest'] { '':'' } { '':'' })
 #foreach(\$row in \$quotaMap.quote)
 <tr>
 <td>\$row.quotaText</td>
 <td>\$date.format('dd.MM.yyyy', \$row.begin)</td>
 <td>\$date.format('dd.MM.yyyy', \$row.end)</td>
 <td>\$row.entitle</td>
 <td>\$row.deduct</td>
 <td>\$row.rest</td>
 </tr>
 #end
 #end
</div>

"""
)

313 Content Script Extension for SAP¶

Copyright © 2013-2025 AnswerModules Sagl

Method Summary

Set the field value

Field Summary

Object
value

Get the field value

SapFunction¶

Method Summary

SapFunction
disableExpParam(String paramName)

Disable an export param

SapFunction
enableExpParam(String paramName)

Enable an export param

SapFunction
execute()

Executes the SAP function.

Object
getChangingParam(String paramName)

Get a changing param

Object
getExportParam(String paramName)

Get an export param

Object
getImportParam(String paramName)

Get an import param

SapFunction
setImpParam(String paramName, Object paramValue)

Set the value of an import param

SapStructure
structure(String structureName, String[] fieldNames)

Fetch the content of a structure export parameter

SapTable
table(String tableName, String[] columnNames)

Fetch the content of a table parameter

SapStructure¶

Method Summary

Map<String, Object>
getRow(String[] columns)

Return the table content as a list of maps

SapStructure
setColumns(String[] columns)

Set the table columns in the list of maps

SapStructure
setColums(String[] columns)

Set the table columns in the list of maps

setRow(Map<String, Object> values)

314 Content Script Extension for SAP¶

Copyright © 2013-2025 AnswerModules Sagl

Method Summary

SapStructure Add a row and set the key/value mappings for the row

Field Summary

Map<String, Object>
row

Return the table content as a list of maps

SapTable¶

Method Summary

SapTable
addRow(Map<String, Object> values)

Add a row and set the key/value mappings for the row

List<Map<String, Object>>
getRows(String[] columns)

Return the table content as a list of maps

SapTable
setColumns(String[] columns)

Set the table colums in the list of maps

SapTable
setColums(String[] columns)

Set the table columns in the list of maps

Field Summary

List<Map<String, Object>>
rows

Return the table content as a list of maps

Extension: Classic UI

Customize an object's functions menu: CSMenu¶

Content Script can be used to perform changes to the standard object function menus, by

adding new options or removing existing ones. This feature is enabled by defining a Content

Script that “filters” the object menu and performs the desired modifications. The “amgui”

service provides a user-friendly interface to perform modifications to the menu object.

As for most other features configured through the Content Script Volume, a convention-over-

configuration approach has been adopted.

The target container in which to place the Content Scripts is CSMenu. The first level under this

container identifies the objects to which the customizations are applied. The naming

convention is one of the following:

D<nodeID>

S<subtype>

•

•

315 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

where nodeID identifies the node unequivocally and subtype identifies a specific object

subtype on Content Server.

Examples:

D2000 will change the function menu of the Enterprise Workspace

S144 will change the function menu of Document type objects (subtype: 144)

The following example shows a menu customization script that includes:

fetching the original menu

filtering the original menu entries (removing entries that match a specific expression)

adding a divider row to split menu entries

adding a submenu

adding a custom menu entry to the new submenu

returning the modified menu

E.g.

•

•

•

•

•

•

316 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

Property Type Description

name String Label of the menu entry (only for menu items and submenus)

openInNewTab Boolean If true opens a new target browser window (only for menu items)

position String
The order of the entry in the menu (available for menu items,

submenus and dividers)

url String The target URL (only for menu items)

Customize a space's add-items menu: CSAddItems¶

Content Script can be used to perform changes to a container’s Add Item menu, by adding new

options or removing existing ones. This feature is enabled by defining a Content Script that

“filters” the menu and performs the desired modifications. The “amgui” service provides a user-

friendly interface to perform modifications to the menu object.

As for most other features configured through the Content Script Volume, a convention-over-

configuration approach has been adopted.

def csMenu = amgui.getCSMenu() //retrive the current object's menu
try{

def node = docman.getNodeFast(nodeID)
/**

 A filter is a closure that returns true if the menu item shall be kept, false otherwise.
 In the filter function scope the object "it" represent the menu item.
 A menu item has the following properties:
 - name (string)
 - url (string)
 - openInNewTab (boolean) *available only on 10.5
 - order (decimal)
 **/

csMenu.filter {it.name == "Open"}
csMenu.appendDivider() //use appendDivider(position) to specify a position

def submenu = csMenu.appendSubMenu("My sub-menu") //use appendSubMenu(name, position) to specify a position
submenu.appendItem("My menu item", "${url}?func=ll&objAction=properties&objId=${nodeID}&nextUrl=${params?.nextUrl?.encodeURL()}")

}catch(e){
log.debug("Unable to apply changes to add items menu",e)

}

return amgui.returnCSMenu(csMenu)

Notice that all operations are performed either through the amgui service or the CSMenu and CSSubMenu objects.

Return the proper value

The last operation performed in a CSMenu script should always be a call to the “returnCSMenu(...)” API of the amgui

service

317 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

The target container in which to place the Content Scripts is CSAddItems. The first level under

this container identifies the objects to which the customizations are applied. The naming

convention is one of the following:

D<nodeID>

S<subtype>

where nodeID identifies the node unequivocally and subtype identifies a specific object

subtype on Content Server.

Examples:

D2000 will change the add items menu of the Enterprise Workspace

The following example shows a menu customization script that includes:

filtering the original menu entries (removing entries that match a specific expression)

adding a custom menu entry

returning the modified menu

E.g.

•

•

•

•

•

318 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

try{
//The current space
def node = docman.getNodeFast(nodeID)
/**

 Other possibile filter examples:
 it.name == "Folder"
 it.subtype == 0
 **/

amgui.filterAddItems {
it.name == "Folder"

}
/**

 Other possibile filter examples:
 it.name == "Folder"
 it.subtype == 0
 **/

amgui.filterAddItems ({false}, true)
amgui.addBrowseViewAddItem(

amgui.newBrowseViewAddItemsMenu().builderUrl().setImg("${img}folder_icons/folder5.gif")
.setName("My new object")
.setPromoted(true)
.setUrl("${url}?func=ll&objAction=create&objType=0&parentId=${node.ID}&nextUrl=${params?.myUrl?.encodeURL()}").create()

)
}catch(e){

log.debug("Unable to apply changes to add items menu",e)
}

return amgui.returnAddItemsMenus()

Invoke a Content Script

The url of the menu entry could be used to pass parameters to a custom Content Script that will perform the

desired operations.

Return the proper value

The last operation performed in a CSAddItems script should always be a call to the “returnAddItemsMenu(...)” API of

the amgui service

319 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

Customize a space's buttons bar: CSMultiButtons¶

Multi-action buttons can be added, removed or modified by using an approach similar to the

CSMenu customization. In this case, customization scripts should be added in the

CSMultiButtons container. The container structure is the same as the one described for the

CSMenu.

As for most other features configured through the Content Script Volume, a convention-over-

configuration approach has been adopted.

The target container in which to place the Content Scripts is CSMultiButtons. The first level

under this container identifies the objects to which the customizations are applied. The naming

convention is one of the following:

D<nodeID>

S<subtype>

where nodeID identifies the node unequivocally and subtype identifies a specific object

subtype on Content Server.

Examples:

D2000 will change the buttons bar menu of the Enterprise Workspace

E.g.

•

•

320 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

where the following fields are mostly relevant:

Property Type Description

ImageMap String
The path of the image map file (in the Support

folder) containing the button icon

ImageXPos, ImageXPos2,

ImageYPos, ImageYPos2
Integer

The coordinates of the portion of the image

map to use for the button (normal and on

mouse over)

Order String The order of the button in the menu bar

Type String The button type (should be “Content Script”)

ExecutesOnClient boolean

try{
amgui.addBrowseViewMultiItemButton(

amgui.newBrowseViewMultiItemButton()
.builder()
.setOrder(1100)
.setJavascriptFunctionName('runContentScript')
.setJavascriptFile("anscontentscript/js/contentScriptMultifileBar.js")
.setImageMap("anscontentscript/contentscriptmultifilebar.png")
.setImageXPos(0)
.setImageYPos(0)
.setImageXPosAlternative(-268)
.setImageYPosAlternative(0)
.setDisplayName('My button')
.create()

)
/**

 Properties that can be used to filter the buttons bar:
 - action (the request handler to be executed e.g. ll.ProcessMultiCopy)
 - Order
 - Name
 - DisplayName
 - ExecutesOnClient

 **/
amgui.filterBrowseViewMultiItemButton {it.name == "mybutton"}

}catch(e){
log.debug("Unable to apply changes to add multi items buttons bar",e)

}
return amgui.returnBrowseViewMultiItemButtons()

321 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

Property Type Description

If the button logic is on the client side (should

be “true”)

DisplayName String The button label

Name String The name of the button

JavascriptFile String
The javascript resource in which the function

controlling the button behavior is defined

JavascriptFunctionName String
The javascript function defined in the

JavascriptFile that controls the button behavior

Customize a space's displayed columns:

CSBrowseViewColumns¶

Content Scripts located in the CSBrowseViewColumns container can be used to perform

modifications to how columns are presented in the standard Content Server Browse View.

The modifications can be limited to specific portions of Content Server. This feature is enabled

by defining a Content Script that “filters” the browse view columns configuration and performs

the desired modifications. The “amgui” service provides a user-friendly interface to perform the

modifications.

As for most other features configured through the Content Script Volume, a convention-over-

configuration approach has been adopted.

The target container in which to place the Content Scripts is CSBrowseViewColumns. The first

level under this container identifies the objects to which the customizations are applied. The

naming convention is one of the following:

D<nodeID>

S<subtype>

where nodeID identifies the node unequivocally and subtype identifies a specific object

subtype on Content Server.

Invoke a Content Script

A sample Javascript file (contentScriptMultifileBar.js) is located in the Content Script Module support folder. Create

a customized version of this file when adding new actions.

•

•

322 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

Examples:

D2000 will change the columns visible in the Enterprise Workspace

The following example shows a browse view columns customization script that includes:

create a new column using the builder

filtering the original columns list (removing entries that match a specific expression)

adding the column to the view

returning the modified columns list

E.g.

•

•

•

•

try{
/**

 A browse view column is quite a complex object. The amgui service provides you with a builder in order to help you in creating it.
 **/

def columnBuilder = amgui.newBrowseViewColumn().builder()

.setColumnName("type") // Column name corresponds to the property
//from the browse view row that will be used
//to populate the column.

.setDisplayName("Type") // Column display name is the label used for the column.

.setAlignment("left")

.setSortable(true) // If sortable the Javascript sorting
//function will look for a property named:

323 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

The following properties are available for each column object (they are managed through a

builder (https://en.wikipedia.org/wiki/Builder_pattern) the CSBrowseViewColumnBuilder obtained :

Property Type Description

isDefault boolean True if the column has a Javascript definition

sortable boolean True if the column has a Javascript definition

DisplayAsLink boolean The value of the column will be wrapped into an HTML link

DisplayValue String The column's value

NewWindow boolean If DisplayAsLink = true, opens the link in a new window

NewWindowTitle String
If DisplayAsLink = true, the title of the window in which link will

be opened

Url String If DisplayAsLink = true, the URL to be used for building the link

alignment String Column alignement. One out: 'left', 'right', 'center'

columnID String Column unique identifier

columnName String Column name

displayName String Column name as it will be displayed in the page

// columnName+'SortStr' or columnID+'SortStr'
// to perform sorting

.setColumnEMWidth(1.0)

.setDisplayAsLink(true)

.setNewWindow(true)

.setUrl("${url}?param=%value%") // The url to be opened.
// The following placeholder
// can be used in the expression:
// %value%, %objid%, %rawvalue%, %nexturl%"

.setFormatValueMask("Type :%value%") // The format mask to be used to
// present the column value.
// The following placeholder
// can be used in the expression:
// %value%, %objid%, %rawvalue%, %nexturl%"

/**
 A filter is a closure that returns true if the column shall be kept, false otherwise.
 In the filter function scope the object "it" represent the column object.
 For default columns the only attribute available is columnID (string) which might have one out the following values (checkBoxColumn, typeColumn, nameWthPrmtdCmdsColumn ("name with promoted commands column"), sizeColumn,
 dataidColumn, dateColumn, arbitraryColumn, columnWithURL, userColumnWithURL)

 All the other columns have the following properties:
 DisplayAsLink (boolean), DisplayValue (string), NewWindow (boolean), NewWindowTitle (string), URL (string), alignment (string), columnID (string), columnName (string), displayName (string)

 **/
amgui.filterBrowseViewColumn {

it.columnID != "dateColumn"
}
amgui.addBrowseViewColumn(columnBuilder.create())

}catch(e){
log.debug("Unable to apply changes to add items menu",e)

}

return amgui.returnBrowseViewColumns()

324 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Builder_pattern

Property Type Description

displayName String Column name as it will be displayed in the page

Default Columns¶

Default columns are columns for which a Javascript column definition exists. Default columns

Javascript definitions can be found in webnode/browse.js file. The following default columns

definition should exist in your environment:

Value Description

checkBoxColumn Used for selecting multiple nodes

typeColumn Represents the node's type in the form of a web-icon

nameWthPrmtdCmdsColumn Name with promoted commands column

sizeColumn Size of the document or number of items in the space

dataidColumn Node's unique system identifier

dateColumn Node's last modification date

arbitraryColumn Template for other columns (ABSTRACT)

columnWithURL Template for other columns (ABSTRACT)

userColumnWithURL Node's owner

The amgui service features a method that can help you in creating your own custom column

Javascript definition on the basis of a template that is stored in the Content Script Volume

(CSVolume:CSGui:BrowseViewColumnDefinition). The custom Javascript column's definition can be

rendered, for example, as part of a customview, an appearance or a Content Script

Here below a real-world usage example. The Script is used to create a custom view within the

space in which is stored.

Filtering columns - lines from 39 to 41

A filter is a closure that returns true if the column shall be kept, false otherwise.

amgui.getBrowseViewColumnDefinition(
String columnID, //The id of the column
Map templateContext, // A map to be used as model for

// the column's definition template
[,CSDocument param] // An optional template document.

// If none is provided the default
// CSVolume:CSGui:BrowseViewColumnDefinition
// will be used

)

325 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

For default columns (listed in the table above) the only attribute available is columnID (string).

Customize a space content view: CSBrowseView¶

Content Scripts located in the CSBrowseView container can be used to perform modifications

on the content of a browse view.

The target container in which to place the Content Scripts is CSBrowseView. The first level

under this container identifies the objects to which the customizations are applied. The naming

convention is one of the following:

D<nodeID>

S<subtype>

where nodeID identifies the node unequivocally and subtype identifies a specific object

subtype on Content Server.

jsAddCell = """
 var cell;

 try
 {

 cell = rowStruct.insertCell(cellCount++);
 cell.className = this.cellClassName;
 if (true === this.nowrap)
 {
 cell.style.whiteSpace = 'nowrap';
 }
 cell.innerHTML = this.getCellValue(dataRow, rowNo);

 }
 catch(e)
 {
 exceptionAlert(e, "Issue occured in browse.js/htmlColumn.AddCell.");
 }
 return cellCount;
"""

jsGetCellValue ="""
 var val = dataRow['pstatus'];
 if (val == undefined)
 {
 val = "";
 }
 return val;
"""

def customView = docman.getTempResource("customView", ".html")

customView.content.withWriter{
it << amgui.getBrowseViewColumnDefinition("pstatus",

["jsAddCell":jsAddCell, "name":"Status", "jsGetCellValue":jsGetCellValue, "cellWidth":"10%"])
}
def cv = docman.createCustomView(self.parent, "customView", customView.content)
cv.setIsHidden()
cv.update()

•

•

326 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

The following example shows a browse view customization script that will iterate on each row

in the browse view and perform modifications for objects of subtype 43200 (Content Scripts)

try{

/**
 Properties that can be used to filter the browse view rows:
 - dataId (Numeric)
 - name (String/Html will be rendered inside an 'a' tag)
 - link (String)
 - size (String/Html e.g. '1 KB')
 - date (String e.g.
 - imgStr (String)
 - imgLargeStr (String)
 - imgThumbnailStr
 - promotedCmds (Html)
 - modifiedImgs (Html)
 - imgStatus (String)
 - statusName (String)

 **/
amgui.filterBrowseView { row ->

// Just for Content Scripts
if(row.type == "43200"){

row.checked = true
row.name = "${row.name.toUpperCase()}"
row.promotedCmds = """ <div style="font-weight:bold;background-color:#EFEFEF;padding:10px;">${row.promotedCmds} </div>"""
row.modifiedImgs = ""

row.imgStatus = "${img}webnode/new.gif"
row.statusName = "Ready to be executed"

327 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

The following properties are available for filtering or modification on each row object that is

being iterated:

Property Type Description

dataId Numeric The node's unique identifier

name
String/

HTML
The node's name Html will be rendered inside an 'a' tag

link String The link to be associated to the node's name

size
String/

HTML
The node's side e.g. '1 KB'

date String The node's last modification date

imgStr String The url for the node's icon

imgLargeStr String The url for the node's icon when the node is featured

imgThumbnailStr String The url for the node's thumbnail

promotedCmds HTML
The HTML code containing links to the node's promoted

functions (can be any HTML)

modifiedImgs HTML
The HTML code to be used to notify users that the node's

has been modified

row.link ="http://www.answermodules.com/products/content-script"
row.size = "not so big afterall..."

row.date = amgui.formatDateForBrowseView(new Date()) //This is a shortcut to format data

row.imgStr = "${img}anscontentscript/lib/img/icons/product-design.png"
row.imgLargeStr = "${img}anscontentscript/lib/img/icons/product-design_large.png"
row.imgThumbnailStr = "http://www.answermodules.com/img/content-script/content-script-banner.png"

}

// This to be sure that the rows will be rendered
return true

}
}catch(e){

log.debug("Unable to filter browse view rows for node {}", nodeID, e)
}
return amgui.returnBrowseViewRows()

Filtering rows - lines from 20 to 42

The filtering closure passed as parameter to the amgui.filterBrowseView(...) method should return a boolean value

of “true”. If “false”, the row will not be rendered.

Add a new row

It is possible to add new rows from scratch by using the amgui.addBrowseViewRow(...) method. A blank row

template can be obtained through the amgui.newBrowseViewRow() method

328 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

Property Type Description

imgStatus String The url for the node's status icon

statusName String The node's status name

Create a custom column backed by Content Script:

CSDataSources¶

Since version 1.5 Content Scripts can be used as Column Data sources. Content Scripts placed

in the CSDataSources Template Folder will automatically be available as Column Data Sources.

The CSDataSource scripts will automatically be invoked by Content Server for each node of the

system, and the resulting value will be used as a column value.

In the Content Script code, the execution context will be enriched by the framework with the

following information related to the current node:

volumeID

parentID

dataID

createDate

modifyDate

As per standard column data sources the developer is in charge of defining and implementing

a reliable updating strategy. Most of the time the task can be accomplished implementing

either a synchronous or an asynchronous (see Managing events) event script.

As a matter of fact, Content Script features two different APIs that can be used to update

columns' datasources values.

Return the proper value

A CSDataSource Content Script MUST always return a String object.

•

•

•

•

•

329 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

The first one is supposed to be used with standard columns’ datasources, the latter with

Content Script backed columns' datasources.

The updateContentScriptColumnValue takes as secondo parameter the name of the Script

used to implement the column’s datadasouce.

The updateColumnValue method takes as second parameter a dataSourceIdentifier, which can

be easily determined inspecting the ExtendedData column’s value of the corresponding

Column object on the DTree table (property “dataSource”).

E.g.

docman.updateColumnValue(CSNode node, //The node for which you want to update the column's value
String dataSourceId, // The standard identifier for the column's datasources
String columnValue // The new value for the column

)

docman.updateContentScriptColumnValue(CSNode node, //The node for which you want to update the column's value
String scriptName, // The name of the Content Script script that serves

// datasource
String columnValue // The new value for the column

)

def exData = sql.runSQL(""" select ExtendedData EXT
 from DTree
 where DataId = %1 """,

false,
false,
-1,
2109 //The column object DataId

).rows[0].EXT
out << extData.getMapFromOscript().dataSource //Returns sys_CreateDate

//(on most of the systems)

330 Extension: Classic UI

Copyright © 2013-2025 AnswerModules Sagl

Extension: AI (LLM)

CARL OpenAI llm

LLM services

Integrate Large Language Models in your workflow¶

Introduction¶

Large Language Models (LLMs) are revolutionizing the way organizations process and leverage

information. These sophisticated AI models, trained on vast amounts of textual data, can

understand, generate, and manipulate human-like text with remarkable accuracy. As

businesses increasingly deal with enormous volumes of unstructured data, integrating LLMs

into existing workflows has become a game-changer for enhancing productivity, improving

decision-making processes, and unlocking new insights.

Module Suite plays a crucial role in seamlessly incorporating LLMs into your enterprise content

management ecosystem. By bridging the gap between your organization's content repositories

and cutting-edge AI capabilities, Module Suite empowers you to:

Automate content classification: Leverage LLMs to automatically categorize and classify

documents, making information retrieval faster and more accurate.

Enhance search functionality: Utilize natural language processing to improve search

results, allowing users to find relevant information using conversational queries.

Generate intelligent summaries: Create concise summaries of lengthy documents,

enabling quick understanding of key points without manual review.

Streamline content creation: Assist users in drafting documents, emails, and reports by

providing AI-powered suggestions and completions.

Required Hotfix for Version 3.7.0

It has been determined that hotfix hotFix_ANS_370_004 is required for the LLM service to work properly on Module

Suite version 3.7.0. Please ensure this hotfix is applied to your system before using the LLM service. Failure to apply

this hotfix may result in unexpected behavior or errors when using LLM-related features.

To obtain and apply this hotfix, please contact AnswerModules support or refer to the official documentation for

hotfix installation procedures.

1.

2.

3.

4.

331 Extension: AI (LLM)

Copyright © 2013-2025 AnswerModules Sagl

Facilitate knowledge discovery: Uncover hidden patterns and relationships within your

content, leading to valuable insights for decision-makers.

Improve data extraction: Extract relevant information from unstructured documents,

making it easier to populate structured databases or forms.

By integrating LLMs through Module Suite, organizations can harness the power of AI to

transform their content management processes, leading to increased efficiency, reduced

manual effort, and improved overall productivity.

Architecture and Networking¶

Module Suite acts as a central hub for communication between Extended ECM (xECM), various

LLM API services, and local resources.

Here's an overview of how the networking and communication work:

flowchart TD

 subgraph ECM["Extended ECM (xECM)"]

 MS[Module Suite]

 end

 API1[OpenAI API]

 API2[Azure AI API]

 API3[Ollama API]

 MS <--> |Internal APIs| ECM

 MS <--> |HTTP/REST| API1

 MS <--> |HTTP/REST| API2

 MS <--> |HTTP/REST| API3

 style ECM fill:#f9f,stroke:#333,stroke-width:2px

 style MS fill:#bbf,stroke:#333,stroke-width:2px

 style API1 fill:#bfb,stroke:#333,stroke-width:2px

 style API2 fill:#bfb,stroke:#333,stroke-width:2px

 style API3 fill:#bfb,stroke:#333,stroke-width:2px

5.

6.

LLM Integration Considerations

While LLMs offer significant benefits, it's important to consider factors such as data privacy, model selection, and

fine-tuning requirements when integrating them into your workflow. Module Suite provides the necessary tools and

interfaces to address these considerations effectively.

332 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Integration with xECM¶

Module Suite runs directly on xECM, providing seamless access to all xECM APIs. This tight

integration allows for efficient data exchange and leveraging of xECM's content management

capabilities.

LLM API Communication¶

Module Suite implements independent communication channels to various LLM API providers,

which can be: - Public internet services (e.g., OpenAI) - VPN-accessible services (e.g., Azure AI) -

On-premises solutions (e.g., LLAMA3 using Ollama to expose an API)

Local Embedding Indexes¶

To enhance performance and maintain data control, Module Suite allows administrators to

configure and create local embedding indexes. These indexes are typically used for

implementing Retrieval-Augmented Generation (RAG) systems. Key points include:

Based on an adapted version of the Lucene open-source indexing engine

Requires sending text chunks to the LLM API service provider for embedding computation

Does not store entire documents outside your organization

Provides full control over chunking policies and methodologies

Typical Communication Sequence¶

Below is a diagram illustrating a typical communication sequence when using Module Suite

with xECM and an LLM API service for implementing a RAG:

sequenceDiagram

 participant User

 participant xECM

 participant Module Suite UI Widget

 participant Module Suite (Script Engine)

 participant LocalIndex

OpenAI-Compatible API Privileged Support

Module Suite features a rich API specifically designed for OpenAI-compatible API service providers, most commonly

used with OpenAI and Azure. This allows for flexible integration with different LLM services while maintaining a

consistent interface.

•

•

•

•

Permission Considerations

When implementing local embedding indexes, it's crucial to ensure that permissions are properly considered. This

helps maintain data security and access control in line with your organization's policies. We will explore this in

detail in the following sections.

333 LLM services

Copyright © 2013-2025 AnswerModules Sagl

 participant LLMAPI

 User->>xECM: Request content

 xECM->>Module Suite UI Widget: Pass request

 Module Suite UI Widget->>Module Suite (Script Engine): Pass request and history

 Module Suite (Script Engine)->>LocalIndex: Query local index

 LocalIndex-->>Module Suite (Script Engine): Return relevant chunks coordinates

 Module Suite (Script Engine)->>xECM: Retrive relevant chunks (context)

 xECM-->>Module Suite (Script Engine): Returns relevant chunks

 Module Suite (Script Engine)->>LLMAPI: Send prompt with context

 LLMAPI-->>Module Suite (Script Engine): Return LLM response

 Module Suite (Script Engine)->>Module Suite UI Widget: Process and format response

 Module Suite UI Widget->>xECM: Render result

 xECM->>User: Display result

Service Provider Support in Module Suite¶

Module Suite offers extensive support for various LLM API providers, with a focus on OpenAI-

compatible APIs and limited support for other providers. Below is a detailed breakdown of the

supported features for each provider type.

OpenAI API Providers (OpenAI and Microsoft Azure AI)¶

Module Suite provides comprehensive support for OpenAI-compatible APIs, including those

from OpenAI itself and Microsoft Azure AI. The following features are supported:

Chat Completion

Text Completion

Function Invocation

Vision (image analysis and processing)

Text-to-Speech

Speech-to-Text

Assistant API

Embeddings

Fine-tuning

Moderation

This wide range of supported features allows for versatile integration of AI capabilities into

your Extended ECM workflows, enabling tasks from simple text generation to complex

multimodal interactions.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

334 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Ollama API Support¶

For Ollama-based API providers, Module Suite currently offers limited but essential support:

Embeddings

Chat Completion

While more restricted than the OpenAI API support, these features still allow for crucial

functionalities such as semantic search and conversational AI interactions using on-premises

or self-hosted models.

graph TD

 A[Module Suite API Support] --> B[OpenAI APIs]

 A --> C[Ollama APIs]

 B --> D[Chat Completion]

 B --> E[Text Completion]

 B --> F[Function Invocation]

 B --> G[Vision]

 B --> H[Text-to-Speech]

 B --> I[Speech-to-Text]

 B --> J[Assistant API]

 B --> K[Embeddings]

 B --> L[Fine-tuning]

 B --> M[Moderation]

 C --> N[Embeddings]

 C --> O[Chat Completion]

 style B fill:#f9f,stroke:#333,stroke-width:2px

 style C fill:#bbf,stroke:#333,stroke-width:2px

 style N stroke:#333,stroke-width:2px

 style O stroke:#333,stroke-width:2px

1.

2.

API Support Evolution

The landscape of LLM APIs is rapidly evolving. Module Suite's API support is regularly updated to include new

providers and features. Always refer to the latest documentation for the most up-to-date information on supported

APIs and features.

Choosing the Right API Provider

When selecting an API provider for your Module Suite implementation, consider the following factors:

Feature requirements: Assess which AI capabilities are crucial for your use case.

Data privacy and compliance: Determine if you need to keep data on-premises or if cloud-based solutions

are acceptable.

•

•

335 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Components of the LLM Service Integration¶

Module Suite provides a comprehensive set of components to enable seamless integration

with LLM services. These components work together to offer a robust and flexible AI-enhanced

experience within the Extended ECM environment. Let's explore each of these components:

Content Script¶

Module Suite features a set of dedicated extension package to support LLM API integration.

OpenAI Extension Package Service¶

The OpenAI service is a dedicated Content Script extension package service specifically

designed for OpenAI-compatible API integrations. Key features include:

Multi-profile support for flexible configuration

Comprehensive implementation of OpenAI's API features

Optimized for use with OpenAI and Azure AI services

LLM Extension Package Service¶

The LLM service is a more general-purpose Content Script extension package service for

integrating various LLM providers. Its features include:

Multi-profile configuration for supporting different LLM services

Currently focused on Ollama API support

Extensible architecture for future LLM provider integrations

Widgets¶

Smart Pages Widget (named CARL)¶

This Smart Pages widget brings AI-powered capabilities directly into the Extended ECM user

interface. This widget:

Provides an interactive AI assistant interface within Smart Pages

Leverages the power of LLM models for various tasks

Enhances user productivity by offering AI-assisted functionalities

Performance needs: Evaluate the response times and throughput required for your applications.

Cost considerations: Compare pricing models of different providers, especially for high-volume usage.

Integration complexity: Consider the ease of integration with your existing infrastructure.

•

•

•

•

•

•

•

•

•

•

•

•

336 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Beautiful WebForm Widget (named CARL)¶

This Beautiful WebForm Widget extends AI capabilities to WebForms, allowing for:

AI-enhanced form interactions

Intelligent form filling assistance

Dynamic content generation based on form context

Services¶

Content Script Service (named carl)¶

This Content Script Service acts as the backend engine for LLM-related functionalities,

providing:

Integration between widgets and LLM services

Business logic for processing AI requests and responses

Customizable workflows for AI-assisted operations

Code Snippets¶

Content Script Snippets¶

Module Suite includes several Content Script snippets that:

Facilitate quick implementation of common LLM-related tasks

Provide reusable code for developers to extend AI functionalities

Demonstrate best practices for integrating AI capabilities into Content Scripts

CARL (Content Server Artificial intelligence Resource and Liaison)¶

CARL is a feature of Module Suite, introduced with version 3.5, that implements a Content Script

co-pilot based on the integration with GPT family models.

CARL Integration in Content Script Editor¶

When enabled in the Base Configuration, CARL integrates directly into the Content Script editor,

offering:

AI-assisted code completion and suggestions

Context-aware help and documentation

Intelligent debugging assistance

•

•

•

•

•

•

•

•

•

•

•

•

CARL Beta Status

337 LLM services

Copyright © 2013-2025 AnswerModules Sagl

graph TD

 A[Module Suite] --> B[OpenAI Service]

 A --> C[LLM Service]

 A --> D[LLM Integration Features]

 D --> E[Smart Pages Widget CARL]

 D --> F[Beautiful WebForm Widget CARL]

 D --> G[Content Script Service carl]

 A --> H[Content Script Snippets]

 A --> I[CARL Co-pilot Feature]

 I --> J[Content Script Editor Integration]

 B --> K[OpenAI/Azure AI]

 C --> L[Ollama]

 style A fill:#f9f,stroke:#333,stroke-width:2px

 style D fill:#bbf,stroke:#333,stroke-width:2px

 style I fill:#fbb,stroke:#333,stroke-width:2px

 style B stroke:#333,stroke-width:2px

 style C stroke:#333,stroke-width:2px

Integration Use Cases¶

Module Suite offers various capabilities for integrating AI-powered functionalities into your

Extended ECM environment. Let's explore common use cases and how to implement them.

Chat Completion¶

Chat completion allows you to create interactive, context-aware conversations with an AI

assistant. This functionality is valuable for implementing:

Intelligent chatbots for user support

Virtual assistants for guided ECM operations

Interactive help systems within your ECM applications

Natural language interfaces for complex queries or tasks

Example: Basic Chat Interaction¶

Here's a simple example of how to implement a chat completion interaction:

OpenAI ExampleCommentsOllama exampleComments

CARL is currently in beta. As a beta feature, it may undergo changes and improvements in future releases. Users are

encouraged to provide feedback to help shape its development.

•

•

•

•

338 LLM services

Copyright © 2013-2025 AnswerModules Sagl

This code configures the request with specific parameters such as the model to use (GPT-4),

temperature setting for response randomness, and maximum token limit. The system message

defines C.A.R.L.'s role, followed by a user question about xECM's metadata support. The

openai.newChatCompletionRequestBuilder() method initializes the request, which is then configured

and built. The addChatMessage() method is used to add both system and user messages to the

conversation. Finally, the createChatCompletion() method sends the request to the OpenAI API and

retrieves the response.

This example showcases the ease of use of the OpenAI service in Module Suite, allowing

developers to quickly implement AI-powered chat functionalities within their Extended ECM

environment. The service handles the complexities of API interaction, allowing developers to

focus on crafting effective prompts and integrating the responses into their applications.

def systemPreamble = """You are C.A.R.L. (Content Server Artificial intelligence Resource and Liaison), an LLM designed to help users working with OpenText Extended ECM"""
def defaultTemperature = 0.7
def model = "gpt-4"
def maxTokens = 2000

try {
// Our services are implemented using fluent APIs and builders to simplify their usage
// Use the auto-completion feature of the editor (CTRL+Space) to explore available configuration options
def reqBuilder = openai.newChatCompletionRequestBuilder()

.model(model)

.temperature(defaultTemperature)

.maxTokens(maxTokens)

.n(1) // Request only one completion (most common use case)

def req = reqBuilder.build()

// Instruct the agent about its purpose and constraints using a system message
req.addChatMessage("system", systemPreamble)

// Add user request or message
req.addChatMessage("user", "Does xECM support the concept of metadata?")

// Submit the request and synchronously wait for the response
def result = openai.createChatCompletion(req)

// Extract and output the content of the first (and only) choice
out << result.choices[0].message.content

} catch (Exception e) {
out << "An error occurred: " + e.getMessage()

}

Use Autocompletion

Remember to use the auto-completion feature of the editor (CTRL+Space) to explore available configuration

options when working with the request builder.

def systemPreamble = """You are C.A.R.L. (Content Server Artificial intelligence Resource and Liaison), an LLM designed to help users working with OpenText Extended ECM"""
def defaultTemperature = 0.7
def model = "llama3"
def maxTokens = 2000
def msgID = "MyMessage"

try {
// Use the llm service with a LangChain-based builder for Ollama

339 LLM services

Copyright © 2013-2025 AnswerModules Sagl

This example illustrates the flexibility of Module Suite's AI integration.

Key points to note:

The llm service is used instead of a specific provider service, allowing for more generic

implementations.

The newLangChainChatCompletionRequestBuilder method is used with "ollama" as the provider.

LangChain is utilized for integration with non-OpenAI services, offering additional

configuration options like custom timeouts.

The overall structure of setting up the request, adding messages, and retrieving the

response remains similar to the previous example.

By using the generic llm service, you can easily switch between different AI providers or models

while maintaining a consistent implementation structure. This flexibility allows you to choose

the most suitable AI backend for your specific use case or requirements.

def reqBuilder = llm.newLangChainChatCompletionRequestBuilder("ollama")
.model(model)
.temperature(0.0)
.logRequestsAndResponses(true)

// Set a custom timeout for non-OpenAI services
reqBuilder.builder.timeout(java.time.Duration.ofSeconds(180))

def req = reqBuilder.build()

// Add system message to define C.A.R.L.'s role
req.addChatMessage("system", systemPreamble)

// Add user query
req.addChatMessage("user", "Does xECM support the concept of metadata?")

// Submit the request and wait for the response
def result = llm.createChatCompletion(req)

// Output the AI-generated response
out << result.choices[0].message.content

} catch (Exception e) {
out << "An error occurred: " + e.getMessage()

}

•

•

•

•

Different models different results

Experiment with different models and providers to find the best balance of performance, cost, and capabilities for

your ECM AI integration needs.

340 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Chat Completion (continued)¶

Example: Streaming Chat Completion¶

Streaming chat completion allows for real-time delivery of AI-generated responses, enhancing

the responsiveness of your AI-powered applications. This is particularly useful for:

Creating more interactive and dynamic user experiences

Implementing typing-like effects in chatbots

Handling long-form content generation without waiting for the entire response

Here's an example of how to implement streaming chat completion:

OpenAI ExampleComments

Key points about this streaming implementation:

The streamChatCompletion method is used instead of createChatCompletion. A closure is provided as

the second argument to streamChatCompletion. This closure is called for each chunk of the

response as it becomes available. The closure implements a producer-consumer pattern:

•

•

•

def systemPreamble = """You are C.A.R.L. (Content Server Artificial intelligence Resource and Liaison), an LLM designed to help users working with OpenText Extended ECM"""
def defaultTemperature = 0.7
def model = "gpt-4"
def maxTokens = 2000
def msgID = "MyMessage"

try {
def reqBuilder = openai.newChatCompletionRequestBuilder()

.model(model)

.temperature(defaultTemperature)

.n(1)

def req = reqBuilder.build()
req.addChatMessage("system", systemPreamble)
req.addChatMessage("user", "Does xECM support the concept of metadata?")

def iterator = 0
result = openai.streamChatCompletion(req, { block ->

// This closure is invoked with streaming chunks as they become available
def map = [

content: block.choices?[0]?.message?.content,
role: block.choices?[0]?.message?.role,
finishReason: (block.choices?[0]?.message?.content != null) ? block.choices?[0]?.finishReason : 'stop'

]
log.debug("GOT {}", map) // Log for debugging
cache.put(msgID + "_" + iterator++, 500, map)

})

out << result.choices
} catch (Exception e) {

out << "An error occurred: " + e.getMessage()
}

341 LLM services

Copyright © 2013-2025 AnswerModules Sagl

It acts as the producer, storing each chunk in the memcache service. The UI can act as the

consumer, retrieving chunks from the memcache to display in real-time.

Each chunk is stored in the memcache with a unique key combining the msgID and an

incrementing iterator. The finishReason is tracked to determine when the response is complete.

This approach allows for more responsive AI interactions, as the UI can start displaying the

response before it's fully generated. It's particularly useful for longer responses or when you

want to create a more dynamic, "typing" effect in your AI interface.

Additional considerations: Producer-Consumer Pattern¶

The streaming chat completion implementation uses a producer-consumer pattern to handle

real-time data flow. Here's a sequence diagram illustrating this process:

Default Consumer Service¶

A default implementation of the consumer service, named "carl", is provided as a Content

Script Service.

You can find it at: Content Script Volume:CSTools:CARL:CSServices

This service helps manage the consumption of streamed chat completion responses, making it

easier to implement the consumer side of the producer-consumer pattern in your applications.

Sequence Diagram¶

Here's a sequence diagram illustrating the producer-consumer process, including the default

"carl" service:

sequenceDiagram

 participant U as UI

 participant S as Script

 participant A as AI Service

 participant C as Memcache

 U->>S: Initiate chat (msgID)

 S->>A: streamChatCompletion request

 activate A

 loop For each chunk

 A-->>S: Stream chunk

 S->>C: Store chunk (msgID_i)

Use debouncing

When implementing the UI for streaming responses, consider using techniques like debouncing to balance

between real-time updates and performance.

342 LLM services

Copyright © 2013-2025 AnswerModules Sagl

 S->>S: Log chunk

 end

 deactivate A

 S-->>U: Completion notification

 loop Until all chunks received

 U->>C: Request chunk (msgID_i)

 C-->>U: Return chunk

 U->>U: Update display

 end

This diagram illustrates the following sequence:

The UI initiates the chat, providing a unique msgID.

The script sends a streaming chat completion request to the AI service.

As the AI service generates the response:

It streams chunks of the response back to the script.

The script stores each chunk in the memcache with a unique key (msgID_i, where i is an

incrementing counter).

The script also logs each chunk for debugging purposes.

Once all chunks are received, the script notifies the UI that the completion is finished.

The UI then repeatedly requests chunks from the memcache using the msgID and

incrementing counter.

As the UI receives each chunk, it updates the display, creating a real-time streaming

effect.

This pattern allows for efficient handling of large responses and provides a smooth, responsive

user experience. The memcache serves as a buffer between the AI service's output rate and the

UI's consumption rate, ensuring that no data is lost and that the UI can process the response

at its own pace.

1.

2.

3.

4.

5.

6.

7.

8.

9.

Adapt it as needed

The actual implementation may vary depending on your specific UI needs.This diagram represents a general

approach that can be adapted to various technical environments.

Benefits of Using the Default "carl" Service

When implementing streaming chat completion in your applications, consider using the provided "carl" service to

streamline your development process and ensure robust handling of streamed responses.

Using the provided "carl" service offers several advantages:

Simplified Implementation: You don't need to write your own consumer logic, reducing development time

and potential errors.

Consistency: The service ensures a consistent approach to consuming streamed responses across your

applications.

1.

2.

343 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Function Calling¶

Function calling allows the AI to interact directly with Content Server, performing actions or

retrieving information as needed. This powerful feature enables the AI to manipulate content

and execute operations within the Extended ECM environment.

Example: Creating Folders Using AI¶

In this example, we'll demonstrate how to use function calling to create folders in Content

Server based on natural language input.

OpenAI Example ChatCompletionOpenAI Example StreamChatCompletionResultComments

Optimization: The service may include optimizations for efficient retrieval and assembly of chunked

responses.

Maintenance: As part of Module Suite, the service will be maintained and updated, ensuring compatibility

with future versions.

To use the "carl" service in your applications, you can call it from your UI code after initiating a streaming chat

completion. The service will handle the retrieval and assembly of the chunked response, allowing you to focus on

displaying the results to the user.

3.

4.

def systemPreamble = """You are C.A.R.L. (Content Server Artificial intelligence Resource and Liaison), an LLM designed to help users working with OpenText Extended ECM"""
def defaultTemperature = 0.7
def model = "gpt-4"
def maxTokens = 2000
def msgID = "MyMessage"

try {
def reqBuilder = openai.newChatCompletionRequestBuilder()

.model(model)

.temperature(defaultTemperature)

.n(1)

def req = reqBuilder.build()
req.addChatMessage("system", systemPreamble)
req.addChatMessage("user", "Create a folder for each month of the year in ${self.parent.ID}")

// Define the function for creating a folder
def func = openai.newChatFunctionBuilder()

.name("createFolder")

.description("Create a folder in the given space (identified by its ID)")

.build()

func.addStringParameter("folderName", "The name of the folder", true)
func.addNumberParameter("parentID", "Parent Space Identifier", true)

// Implement the function executor
func.executor = { jsonArguments ->

try {
def slurper = new JsonSlurper()
def args = slurper.parseText(jsonArguments)
def newNode = docman.createFolder(docman.getNode(args.parentID as Long), args.folderName)
return "Created <a data-ampw='am-action' data-action='am_goTo' data-params='${newNode.ID}' data-toggle='click' href='#'>${newNode.name}"

} catch(e) {
log.error("Unable to handle the request", e)
return "Something went wrong"

344 LLM services

Copyright © 2013-2025 AnswerModules Sagl

}
}

req.setFunctions([func])

result = openai.createChatCompletion(req)
out << result.choices[0].message

} catch (Exception e) {
log.error("An error occurred ", e)
out << "An error occurred: " + e.getMessage()

}

def systemPreamble = """You are C.A.R.L. (Content Server Artificial intelligence Resource and Liaison), an LLM designed to help users working with OpenText Extended ECM"""
def defaultTemperature = 0.7
def model = "gpt-4"
def maxTokens = 2000
def msgID = "MyMessage"

try {
def reqBuilder = openai.newChatCompletionRequestBuilder()

.model(model)

.temperature(defaultTemperature)

.n(1)

def req = reqBuilder.build()
req.addChatMessage("system", systemPreamble)
req.addChatMessage("user", "Create a folder for each month of the year in ${self.parent.ID}")

// Define the function for creating a folder
def func = openai.newChatFunctionBuilder()

.name("createFolder")

.description("Create a folder in the given space (identified by its ID)")

.build()

func.addStringParameter("folderName", "The name of the folder", true)
func.addNumberParameter("parentID", "Parent Space Identifier", true)

// Implement the function executor
func.executor = { jsonArguments ->

try {
def slurper = new JsonSlurper()
def args = slurper.parseText(jsonArguments)
def newNode = docman.createFolder(docman.getNode(args.parentID as Long), args.folderName)
return "Created <a data-ampw='am-action' data-action='am_goTo' data-params='${newNode.ID}' data-toggle='click' href='#'>${newNode.name}"

} catch(e) {
log.error("Unable to handle the request", e)
return "Something went wrong"

}
}

req.setFunctions([func])

result = openai.streamChatCompletion(req, { block-> //This is an asyncrnous method, meaning that the script execution
// won't wait for the completion to be terminated. The method accept
// as its second parameter a closure that will be invoked with the streaming
// chunks as they become available

def map = [
content:block.choices?[0]?.message?.content,
role: block.choices?[0]?.message?.role,
finishReason:(block.choices?[0]?.message?.content != null)?block.choices?[0]?.finishReason:'stop'

]
log.debug("GOT {}", map) // Let's also print it into the log file for debugging
cache.put(msgID+"_"+iterator++, 500, map)

})
out << result*.content

345 LLM services

Copyright © 2013-2025 AnswerModules Sagl

This example demonstrates several key concepts:

Function Definition: We define a createFolder function using the newChatFunctionBuilder().

This function takes two parameters: folderName and parentID.

Function Implementation: The executor closure contains the actual implementation of

the function. It uses the Content Server API (docman) to create a new folder.

AI Integration: The function is added to the chat completion request, allowing the AI to

call it when necessary.

Natural Language Processing: The user's request to "Create a folder for each month of

the year" is interpreted by the AI, which then calls the createFolder function multiple

times to fulfill the request.

Error Handling: The implementation includes error handling to manage potential issues

during folder creation.

Interactive Response: The function returns an HTML link that allows users to navigate

directly to the newly created folder.

} catch (Exception e) {
log.error("An error occurred ", e)
out << "An error occurred: " + e.getMessage()

}

example 2

•

•

•

•

•

•

Benefits of Function Calling

Function calling in Module Suite offers several advantages:

Direct Interaction: The AI can perform actions directly in Content Server, bridging the gap between natural

language requests and system operations.

Flexibility: You can define custom functions to extend the AI's capabilities, tailoring it to your specific ECM

needs.

Safety: By defining specific functions, you control what actions the AI can perform, ensuring security and

preventing unintended operations.

Complex Operations: You can implement complex workflows by combining multiple function calls based on

user requests.

1.

2.

3.

4.

Error handling

When implementing functions, ensure proper error handling and logging to maintain system stability and aid in

troubleshooting.

Functions everywhere

346 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Document Assembly¶

Document assembly is a powerful use case that combines AI-generated content with document

creation and manipulation within the Extended ECM system. This approach allows for the

automatic generation of documents based on user requests, leveraging AI to create content

and Module Suite's capabilities to assemble and store the document.

Example: Create a presentation letter in Word¶

OpenAI Example StreamChatCompletionResultComments

Consider implementing additional functions for common ECM tasks, such as searching for documents, updating

metadata, or initiating workflows. This can greatly enhance the AI's utility within your Extended ECM environment.

def systemPreamble = "You are D.O.C.S. (Document Organizing and Creation System) an AI agent tasked to support users in creating documents.The content of the document MUST always be passed to the 'createDocument' function as valid X-HTML code (example: DEMO). Always wrap the content in a single 'div' element. Avoid the usage of HTML tag such as (BR). The font family for every text must be: font-family: Poppins, sans-serif tables must have a borders: 1px solid #fff;"

data = [:]
data.company = [name:"CreativeAnswer SA", address:"Via Penate 4, 6850 Mendrisio Switzerland", description:"""
At CreativeAnswer, we are a united marketing agency & software house blending creative brilliance with tech mastery.

We have developed a unique human-AI approach to help you create standout, cost-effective AI-driven marketing solutions with a competitive edge.

This isn't your typical AI tool. We don't settle for generic AI apps, nor do we just churn out text or images. Our creative and tech teams work in perfect sync, shaping ideas with proprietary AI, adapting and customizing them to your needs, and delivering the personal experience your customers want… effortlessly.

We bring you the most valuable approach to GenAI marketing, tailored exclusively for you. Just give it a try.

CreativeAnswer is a proud part of:
- AnswerModules Group, the award-winning Swiss tech company delivering personalized ECM software to 120+ enterprises, including 10 Global Fortune's 500
- Microsoft for Startups Founders Hub
"""]

data.user = [name:"Patrick Vitali", role:"CTO"]

def defaultTemperature = 0.7
def model = "gpt-4o"
def maxTokens = 2000
def msgID = "MyMessage"
try{

def reqBuilder = openai.newChatCompletionRequestBuilder()
.model(model)
.temperature(defaultTemperature)
.n(1)

def req = reqBuilder.build()

func = llm.newOpenAIChatFunctionBuilder().name("createDocument")
.description("Given a title, creates a new document, matching user's requests with content generated by the AI agent").build()

func.parameters = []
func.addStringParameter("title", "The document title", true)
func.addStringParameter("content", "The document's content. The content must be a valid X-HTML code (example: DEMO)", true)

func.executor = { jsonArguments ->
try{

def slurper = new JsonSlurper()
def args = slurper.parseText(jsonArguments)

if(!args.title.endsWith('.docx')){

347 LLM services

Copyright © 2013-2025 AnswerModules Sagl

args.title = "${args.title}.docx"
}

docTemplate = docman.getNodeByPath("CreativeAnswer:Marketing:Corporate Identity:Template.docx")
newNode = docman.getNodeByName(docTemplate.parent, args.title)

//Load contents from a Docx file for processing
def doc = docx.loadWordDoc(docTemplate)

//Creates a temporary resouce
def res = docman.getTempResource("out", "docx")

//Updates the custom-xml databinding based on the OpenDoPE standard. Since: 2.3.0
//Notice the combined used of multiple Content Script services: docx, docman, html, cache
def xml = ""
if(newNode){

//Update xml with custom values
xml = """<doc>

 <content><div>${html.escapeXML(html.htmlToXhtml(args.content))}</div></content>
 <docID>${newNode.ID}</docID>
 </doc>"""

doc.updateOpenDoPEBindings(xml, true, true)
doc.save(newNode)

}else{
newNode = doc.save(docTemplate.parent, args.title)
xml = """<doc>

 <content><div>${html.escapeXML(html.htmlToXhtml(args.content))}</div></content>
 <docID>${newNode.ID}</docID>
 </doc>"""

doc.updateOpenDoPEBindings(xml, true, true)
doc.save(newNode)

}
ulrEditTemplate = "${url}?func=Edit.Edit&nodeid=${newNode.ID}&uiType=1&viewType=1&nexturl=${params.nextUrl}"

return "The requested document has been created with title: ${args.title}.
You can finalize the draft using the link that follows:Edit"

}catch(e){
log.error("Error ",e)
return "Something went wrong "+e.message

}
}

req.setFunctions([func])

req.addChatMessage("system", //one out: system, assistant, user
systemPreamble) //We instruct the agent about its purpose and constraints using system messages at the beginning

//of the chat
req.addChatMessage("system", "When creating documents you should consider the following context, expressed in the form of a JSON structure: ${JsonOutput.toJson(data)}")

//The user request
req.addChatMessage("user", "Create a presentation letter to be sent to John Doe, ACME's CMO") //Add user request or message

result = openai.streamChatCompletion(req, { block->
def map = [

content:block.choices?[0]?.message?.content,
role: block.choices?[0]?.message?.role,
finishReason:(block.choices?[0]?.message?.content != null)?block.choices?[0]?.finishReason:'stop'

]
log.debug("GOT {}", map) // Let's also print it into the log file for debugging
cache.put(msgID+"_"+iterator++, 500, map)

})
out << result*.content

} catch (Exception e) {
out << "An error occurred: " + e.getMessage()

}

348 LLM services

Copyright © 2013-2025 AnswerModules Sagl

This example demonstrates how to create a presentation letter using AI-generated content and

Module Suite's document manipulation features.

Key components of this implementation include:

AI Content Generation: The AI is instructed to create document content based on user

requests and provided context.

Document Creation Function: A specialized function is made available to the AI for

creating documents within the ECM system.

Content Formatting: The AI is guided to provide content in a specific format (X-HTML) to

ensure compatibility with the document creation process.

Context Provision: Relevant data, such as company and user information, is provided to

the AI to inform the content generation process.

Document Template Usage: The implementation utilizes a predefined document

template as a base for new documents.

Dynamic Document Update: The system checks for existing documents with the given

title, updating if found or creating new ones if not.

OpenDoPE Standard: The implementation leverages the OpenDoPE standard for XML data

binding, allowing for dynamic content insertion into documents.

Streaming Response: The AI's response is streamed, enabling real-time updates and

potentially faster response times for large documents.

Additional considerations: Implementation details¶

When implementing AI-assisted document assembly:

Ensure that the AI is properly constrained to generate content in the required format and

style.

example 2

1.

2.

3.

4.

5.

6.

7.

8.

Benefits of AI-Assisted Document Assembly

Efficiency: Automates the process of creating standard documents, saving time and reducing manual effort.

Consistency: Ensures that created documents follow a consistent structure and style.

Contextual Relevance: By providing context to the AI, the generated content can be highly relevant and

personalized.

Flexibility: Can be adapted for various document types and use cases within the ECM system.

Integration: Seamlessly combines AI capabilities with existing ECM features and document templates.

1.

2.

3.

4.

5.

•

349 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Regularly validate the generated content to maintain quality and consistency.

Consider implementing error handling and logging to manage potential issues during

document creation.

Design the user interface to provide clear feedback on the document creation process

and results.

Embedding Index Generation¶

Embedding index generation is a crucial step in creating AI-powered search and retrieval

systems within your ECM environment. This use case demonstrates how Module Suite can

generate embedding indexes for documents, enabling advanced semantic search capabilities.

Example: Indexing a single document¶

The provided implementation showcases the generation of an embedding index for documents

in the ECM system. A key feature of this approach is its flexibility in handling different

document types and chunking methods.

OpenAI CodeOllamaComments

•

•

•

Note

The specific implementation details may vary depending on your ECM environment and chosen AI service. Consult

your Module Suite documentation for precise integration steps.

Tip

Consider expanding this approach to other document types, such as reports, contracts, or proposals. You can create

specialized templates and AI instructions for each document type to further streamline your document creation

processes.

try {
// Retrieve the document node from the Enterprise Workspace
def document = docman.getNodeByPath(docman.getEnterpriseWS(), "Documents:MS_3_7_0_Manual.pdf")
def docID = document.ID as String
def lastVersion = document.lastVersion
def list = null
def sources = [:]

// Prepare document metadata for indexing
// We store metadata instead of raw text for efficiency:
// 1. Document ID
// 2. Document type (pdf or raw)
// 3. Chunk dimension (e.g., page number or word count)
// 4. Chunk identifier
if (lastVersion.mimeType == "application/pdf") {

// For PDF documents: Extract text page by page
def content = pdf.getTextForPages(document)
sources = content.collectEntries { entry ->

[("${docID}_pdf_1_${entry.key}"): entry.value]
}

350 LLM services

Copyright © 2013-2025 AnswerModules Sagl

} else {
// For non-PDF documents: Split content into word-based chunks
def content = docman.getContentAsRawText(document)
def chunkSize = 100 // Number of words per chunk (adjustable)
def index = 0
sources = content.split("\\s").toList().collate(chunkSize) *.join(" ").collectEntries {

val -> [("${docID}_raw_${chunkSize}_${index++}"): val]
}

}

// Process sources in batches of 10
list = sources.entrySet().toList().findAll { it.value }.collate(10)
def chunk = 0

list.each { subEnties ->
log.debug("Processing Chunk ${chunk} {}", subEnties *.value)
try {

// Generate embeddings for the current batch
def req = llm.newOpenAIEmbeddingRequestBuilder()

.model("text-embedding-ada-002")

.input(subEnties *.value)

.build()
def embeddings = llm.createEmbeddings(req).data

// Build vectorial index using embeddings and metadata
llm.newCSVectorialIndexManager().buildIndex(docID, embeddings, subEnties *.key)

} catch (e) {
// Log errors for individual chunks without stopping the entire process
log.error("Unable to process chunk ${chunk}", e)

}
log.debug("End processing Chunk ${chunk++}")

}
} catch (e) {

// Log any overall process errors
log.error("An error occurred during index generation.", e)

}

try {
// Retrieve the document node using the provided path
def document = docman.getNode(2031317)
def docID = document.ID as String
def lastVersion = document.lastVersion
def list = null
def sources = [:]

if (lastVersion.mimeType == "application/pdf") {
// If the document is a PDF, extract text for each page and create embeddings
def content = pdf.getTextForPages(document)
sources = content.collectEntries { entry -> [("${docID}_pdf_1_${entry.key}"): entry.value] }

} else {
// If not a PDF, split the content into chunks and generate embeddings
def content = docman.getContentAsRawText(document)
def chunkSize = 100 // The number of words each chunk should be made of
def index = 0
sources = content.split("\\s").toList().collate(chunkSize) *.join(" ").collectEntries {

val -> [("${docID}_raw_${chunkSize}_${index++}"): val]
}

}

list = sources.entrySet().toList().findAll { it.value }.collate(10)
def chunk = 0
list.each { subEnties ->

log.debug("Processing Chunk ${chunk} {}", subEnties *.value)
try {

// Create an embedding request for the chunk

351 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Key Features

Document Type Flexibility: The system can handle various document types, with specific

handling for PDF files and a general approach for other text-based documents.

Adaptive Chunking: The chunking strategy adapts based on the document type:

For PDFs: Text is extracted page by page.

For other documents: Content is split into chunks based on a specified word count.

Metadata-Rich Indexing: Instead of storing raw text, the index stores metadata that can

be used to retrieve the original text:

Document ID

Document type (PDF or raw)

Chunk dimensions (e.g., page number for PDFs, word count for other documents)

Chunk identifier

Configurable Chunk Size: For non-PDF documents, the chunk size (number of words per

chunk) can be easily adjusted.

Batch Processing: Embeddings are generated and indexed in batches to manage resource

usage efficiently.

Additional Considerations: Implementation Highlights¶

This implementation demonstrates several important concepts:

Document Retrieval: The system retrieves documents from the ECM using the document

management API.

model = llm.newCSEmbeddingModelBuilder("ollama")
.modelName("llama3")
.logRequests(true)
.logResponses(true)
.build();

def embeddings = []
subEnties.each{

embeddings << llm.newCSEmbedding(model.embed(it.value))
}

// Build a vectorial index for the document using the embeddings
llm.newCSVectorialIndexManager().buildIndex(docID, embeddings, subEnties*.key)

} catch (e) {
log.error("Unable to process chunk ${chunk}", e)

}
log.debug("End processing Chunk ${chunk++}")

}
} catch (e) {

log.error("An error occurred. ", e)
}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

1.

352 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Type-Specific Processing: Different processing logic is applied based on the document's

MIME type.

Flexible Text Extraction:

For PDFs, text is extracted page by page using a PDF processing service.

For other documents, raw text is extracted and split into word-based chunks.

Metadata Generation: Each chunk is associated with a unique identifier that includes:

Document ID

Document type (PDF or raw)

Chunk size or page number

Chunk index

Embedding Generation: The system uses an LLM service to generate embeddings for

each chunk of text.

Index Building: A vectorial index is built using the generated embeddings and associated

metadata.

Retrieval-Augmented Generation (RAG)¶

Retrieval-Augmented Generation (RAG) is a powerful technique that combines the strengths of

large language models with the ability to access and utilize specific, up-to-date information

from your Extended ECM system. This approach significantly enhances the accuracy and

relevance of AI-generated responses by grounding them in your organization's actual content.

Example: Using a all the documents in a folder as a Knowledge Base¶

In this use case, we demonstrate how to implement a RAG system within the Module Suite. The

system performs the following key steps:

Embeds the user's question using a specified embedding model.

Searches a pre-built set of vector indexes of your ECM content for relevant information.

Retrieves the actual text content of the most relevant chunks.

Incorporates this retrieved context into the prompt for the large language model.

Generates a response using the LLM, now informed by the relevant context.

OpenAI CodeComments

2.

3.

◦

◦

4.

◦

◦

◦

◦

5.

6.

1.

2.

3.

4.

5.

An index for each document

This example assumes that an embedding index has been created for each document

353 LLM services

Copyright © 2013-2025 AnswerModules Sagl

// Configuration parameters for the RAG system
def numberOfSnippetToConsider = 1 // Number of relevant snippets to use for context
def distanceSnippetTrashold = 0.8 // Cosine similarity threshold for relevant snippets
def embeddingModel = "text-embedding-ada-002" // Model used for generating embeddings
def defaultTemperature = 0.8 // Temperature for LLM response generation
def model = "gpt-4" // LLM model to use for generating responses
def maxTokens = 2000 // Maximum number of tokens in the LLM response
def msgID = "msgID" // Unique identifier for the message (used in streaming scenarios)

// Function to retrieve relevant context based on the user's question
def getContext = { String prompt ->

// Get all document IDs in the KB folder (assuming documents are of subtype 144)
def indexes = docman.getNodeByPath("KB").childrenFast.findAll{it.subtype == 144}.collect{it.ID as String}

// Generate embedding for the user's prompt
def req = openai.newEmbeddingRequestBuilder().model(embeddingModel).input([prompt]).build()
def promptEmbedding = openai.createEmbeddings(req).data

// Search the vector indexes for similar content
def context = llm.newCSVectorialIndexManager().getIndexesSearcher(*indexes)

.query(promptEmbedding[0], 100, 100)

.findAll{it.score >= distanceSnippetTrashold}

def textContext = ""
if(context) {

// Parse the index key to extract document information
// Format: DOCID_identifier_chunkDimension_chunkNumber
def (docID, extMode, dimension, chunkNum) = context[0].text.split("_")

// Retrieve the actual text content based on the extraction mode
switch(extMode) {

case "raw":
// For raw text, split into words and retrieve the specific chunk
textContext = docman.getContentAsRawText(docman.getNodeFast(docID as Long))

.split("\\s")

.toList()

.collate(dimension as int)
*.join(" ")[chunkNum as int]

break
case "pdf":

// For PDFs, retrieve the specific page(s)
textContext = pdf.getTextForPages(docman.getNodeFast(docID as Long),

chunkNum as int,
(chunkNum as int) + (dimension as int))[(chunkNum as int)]

break
}

}
return textContext

}

// Main execution
def question = "Which is the biggest update on Module Suite 3.2.0 ?"

// Set up the chat completion request
def builder = openai.newChatCompletionRequestBuilder()
def req = builder.model(model)

.user("u" + users.current.ID)

.temperature(defaultTemperature)

.n(1)

.build()

// Add system message to define CARL's role
req.addChatMessage("system", "You're C.A.R.L. (Content Server Artificial intelligence Resource and Liaison) an LLM designed to help users working with OpenText Extended ECM")

// Retrieve relevant context for the question
def context = getContext(question)

// Add user message with or without context

354 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Key Components

Embedding Generation: The system uses the OpenAI API to generate embeddings for the

user's question.

Vector Index Search: A custom CSVectorialIndexManager is used to search pre-built indexes

of your ECM content.

Context Retrieval: Based on the search results, the system retrieves the actual text

content from your ECM documents, handling different document types (e.g., raw text,

PDF) appropriately.

LLM Integration: The retrieved context is incorporated into the prompt sent to the LLM

(in this case, GPT-4), allowing it to generate more accurate and relevant responses.

Additional Considerations: Implementation Highlights¶

Index Management: Ensure that your vector indexes are kept up-to-date as your ECM

content changes.

Performance Optimization: Consider caching frequently accessed content or embeddings

to improve response times.

Privacy and Security: Be mindful of what content is being sent to external LLM services

and ensure compliance with your organization's data policies.

if(context) {
req.addChatMessage("user", """Given the following context: ${context}

Answer the user question: ${question}""")
} else {

req.addChatMessage("user", question)
}

// Generate and output the response
result = openai.createChatCompletion(req)
out << result.choices[0].message.content

1.

2.

3.

4.

Benefits

Improved Accuracy: By grounding the LLM's responses in your actual ECM content, the system provides

more accurate and relevant answers.

Up-to-date Information: The system can access the latest information in your ECM, ensuring responses

reflect the most current data.

Customization: The RAG approach allows the AI to leverage your organization's specific knowledge and

terminology.

Reduced Hallucination: By providing relevant context, the likelihood of the LLM generating incorrect or

fabricated information is significantly reduced.

1.

2.

3.

4.

•

•

•

355 LLM services

Copyright © 2013-2025 AnswerModules Sagl

This implementation demonstrates a basic RAG system that can be further customized and

optimized based on your specific needs and use cases within the Extended ECM environment.

Close the loop

Consider implementing a feedback mechanism to continuously improve the relevance of retrieved contexts and the

quality of generated responses.

Do not index just once

The effectiveness of the RAG system heavily depends on the quality and coverage of your vector indexes. Regular

maintenance and updates of these indexes are crucial for optimal performance.

356 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Configuration¶

Base Configuration

(https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-

configuration) parameters description, default and purpose.

CARL Service Configuration Overview¶

The following table outlines the configuration parameters for the CARL service:

Parameter Default Value Description

amcs.carl.enabled false Enable or disable CARL feature

amcs.carl.default_mode chat

357 LLM services

Copyright © 2013-2025 AnswerModules Sagl

https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration

Parameter Default Value Description

Default mode for CARL

(deprecated, chat is the only

available mode)

amcs.carl.kb_cs_override empty
Override for CARL co-pilot's

knowledge base (KB)

amcs.carl.default_temperature 0.5D
CARL's request default

temperature

amcs.carl.kb_cs_context 2

Number of CARL's KB entries

to consider as context for

each request

amcs.carl.kb_cs_distance 0.75D
Threshold for cosine distance

among CARL's KB entries

amcs.carl.default_lang EN CARL's default language

amcs.carl.default_emb_model text-embedding-ada-002
Default embedding model

(used for updating the KB)

amcs.carl.kb_context_maxlen 20000

Maximum length of KB entries

to be included in the request

(in characters)

amcs.carl.default_maxtokens 8000

Default number of tokens to

be used in completion

requests

amcs.carl.auth_id empty Reserved for future use

amcs.carl.auth_secret empty
The OpenAI API key for your

organization

amcs.carl.auth_uri empty Reserved for future use

amcs.carl.api_uri

https://api.openai.com/v1/

(https://api.openai.com/

v1/)

OpenAI API endpoint

amcs.carl.api_version empty Reserved for future use

Deprecated Parameter

The amcs.carl.default_mode parameter is considered deprecated. It exists for historical reasons when LLMs first

became popular and supported text completion. Currently, almost everything is done in the form of chat

completion.

Knowledge Base Override

358 LLM services

Copyright © 2013-2025 AnswerModules Sagl

https://api.openai.com/v1/
https://api.openai.com/v1/
https://api.openai.com/v1/
https://api.openai.com/v1/
https://api.openai.com/v1/
https://api.openai.com/v1/

LLM Service Configuration Overview¶

The following table outlines the configuration parameters for the LLM service:

Parameter Default Value Description

amcs.llm.activeProfiles default
Comma-separated list of

active profiles

amcs.llm.provider.default openai
The LLM API Service

provider

amcs.llm.auth_id.default empty
Used if the provider uses

OAuth authentication

amcs.llm.auth_secret.default empty
The provider's integration

key (secret)

The amcs.carl.kb_cs_override parameter is optional and should only be used if you want to override the

knowledge base of the CARL co-pilot. The KB of CARL (the Content Script co-pilot) has been generated based on the

content of the Content Script Volume, specifically the Content Script Snippets.

The carl service features an API carl.dumpCarlKB() that allows you to regenerate this KB so that you can save it as

a document on Content Server. Under The Content Script Volume:CSTools:CARL:Utilities, there is a script named

"ExportCARLKB" that implements this concept. It should be used in case you have custom snippets you want to be

included in CARL's KB.

Cosine Distance Threshold

The amcs.carl.kb_cs_distance parameter sets the threshold for the cosine distance among CARL's KB entries. This

value determines whether an entry is considered relevant and should be included in building a request context. A

lower value will result in more strict matching, while a higher value will be more lenient.

Token Limit

The amcs.carl.default_maxtokens parameter sets the default number of tokens to be used in completion

requests. Be aware that different AI models may have different maximum token limits. Ensure this value does not

exceed the limit of your chosen model.

API Key Security

The amcs.carl.auth_secret parameter is used to store your OpenAI API key. Ensure that this value is kept secure

and not exposed in any logs or public configurations. It's recommended to use secure methods for storing and

managing API keys in your production environment.

API Endpoint

The amcs.carl.api_uri parameter is set to the default OpenAI API endpoint. If you're using a different provider or

a custom endpoint, you'll need to update this value accordingly.

359 LLM services

Copyright © 2013-2025 AnswerModules Sagl

Parameter Default Value Description

amcs.llm.auth_uri.default empty

The URL for generating an

authorization URL (for

OAuth)

amcs.llm.api_uri.default
https://api.openai.com/v1/

(https://api.openai.com/v1/)
The APIs endpoint

amcs.llm.model_id.default empty
The default model to be

used (deprecated)

amcs.llm.temperature.default 0.0
The default request's

temperature (deprecated)

amcs.llm.net_timeout.default 3000
The default network

timeout (in milliseconds)

amcs.llm.net_log_enabled.default false
Network Request and

Responses Logging

amcs.llm.index_store empty
The storage path for

embedding indexes

Active Profiles

The amcs.llm.activeProfiles parameter supports multiple profile configurations. You can register a new profile

by adding the proper "Custom variables" to the Base Configuration. This property allows you to enable existing

profiles. Profiles that are not enabled are not considered.

Supported Providers

As of the time of writing, the supported LLM API Service providers (amcs.llm.provider.default) are: - openai -

azure - ollama

Deprecated Parameters

The following parameters are marked as deprecated: - amcs.llm.model_id.default: The default model to be used -

amcs.llm.temperature.default: The default request's temperature

Consider using alternative methods to specify these values in your requests.

API Key Security

The amcs.llm.auth_secret.default parameter is used to store your LLM provider's API key. Ensure that this value

is kept secure and not exposed in any logs or public configurations. It's recommended to use secure methods for

storing and managing API keys in your production environment.

Network Logging

360 LLM services

Copyright © 2013-2025 AnswerModules Sagl

https://api.openai.com/v1/
https://api.openai.com/v1/
https://api.openai.com/v1/
https://api.openai.com/v1/

Defining New LLM Service Profiles¶

To create a new profile for the LLM service, you need to add custom variables to the Base

Configuration. The process involves replicating the existing configuration parameters but

replacing the "default" suffix with the name of your new profile. This allows you to maintain

multiple configurations for different LLM providers or use cases within the same system.

For example, to create an "azure" profile for Azure AI, you would add the following custom

variables:

Parameter Value

amcs.llm.api_uri.azure
https://amai-east-us.openai.azure.com/ (https://amai-east-

us.openai.azure.com/)

amcs.llm.auth_secret.azure 7a234aaaa666666d5a245245422cvbs23a

amcs.llm.provider.azure azure

Similarly, to create an "ollama_prod" profile for Ollama, you would add:

Parameter Value

amcs.llm.provider.ollama_prod ollama

amcs.llm.api_uri.ollama_prod http://15.201.113.243:11434 (http://15.201.113.243:11434)

By defining these custom variables, you create distinct profiles that can be activated using the

amcs.llm.activeProfiles parameter. This flexibility allows you to easily switch between different

LLM providers or configurations without modifying the core settings. Remember to include all

necessary parameters for each profile to ensure proper functionality.

The amcs.llm.net_log_enabled.default parameter enables logging of network requests and responses. This

should be set to false in production environments to prevent potential exposure of sensitive information.

Embedding Index Storage

The amcs.llm.index_store parameter specifies the storage path for embedding indexes. In most cases, this should

be a shared storage location accessible to all cluster nodes (e.g., EFS) to ensure consistency across the system (e.g.

\\otadminBe01\EFS\llm_indexes\).

OAuth Authentication

If your LLM provider uses OAuth authentication, you'll need to set the amcs.llm.auth_id.default and

amcs.llm.auth_uri.default parameters accordingly. These are used for generating and managing OAuth tokens.

Profile Naming

361 LLM services

Copyright © 2013-2025 AnswerModules Sagl

https://amai-east-us.openai.azure.com/
https://amai-east-us.openai.azure.com/
https://amai-east-us.openai.azure.com/
https://amai-east-us.openai.azure.com/
http://15.201.113.243:11434
http://15.201.113.243:11434

OpenAI batch cost optimization llm

OpenAI APIs

OpenAI Batch Processing¶

Introduction¶

OpenAI Batch Processing allows you to submit multiple API requests for asynchronous

processing at 50% of the cost of standard requests. All requests in a batch must be of the same

type (all embeddings, all chat completions, etc.) and are organized in a JSONL (JSON Lines) file

format. Requests are processed when resources are available, guaranteed within 24 hours.

How Does Batch Processing Work?¶

The batch processing workflow follows these key steps:

Create and upload the batch file to OpenAI

Create a batch job from the uploaded file

Monitor the batch status

Retrieve results once processing is complete

Examples¶

Example 1¶

Uploading a Batch FileComments

Create multiple embedding tasks and upload them as a batch file. All tasks must be of the

same type:

Choose clear and descriptive names for your profiles to easily identify their purpose or associated provider. For

instance, use names like "azure_prod", "openai_dev", or "ollama_test" to indicate both the provider and the

environment.

Secure Configuration

When defining profiles, especially those containing sensitive information like API keys, ensure that your

configuration files and storage are properly secured and follow your organization's security best practices.

1.

2.

3.

4.

// List of texts to create embeddings for
def texts = [

362 OpenAI APIs

Copyright © 2013-2025 AnswerModules Sagl

This example shows how to create multiple embedding requests and tasks in a loop, then

combine them into a single batch file. Each task is assigned a unique custom ID that you can

use to track and identify individual requests in the batch results.

Example 2¶

Creating a Batch JobComments

After uploading a batch file, create a batch job to start processing:

The batch processes asynchronously. Check status later.

Example 3¶

Retrieving Batch Status and ResultsComments

"Hello world",
"Machine learning is fascinating",
"Natural language processing enables AI",
"Batch processing saves costs",
"OpenAI provides powerful AI models"

]

// Build the batch file with all tasks
// All tasks must be of the same type (all embeddings in this case)
def batchFile = openai.newBatchFileRequestBuilder("embeddings_batch")

// Create embedding requests and tasks using a closure
texts.eachWithIndex { text, i ->

def embeddingRequest = openai.newEmbeddingRequestBuilder()
.model("text-embedding-3-small")
.input(text)
.user("test-user")
.build()

def task = openai.newBatchTaskForEmbeddingsBuilder("embedding_${String.format('%03d', i + 1)}")
.task(embeddingRequest)
.build()

batchFile.addTask(task)
}

// Build and upload the batch file
def uploadedFile = openai.uploadBatchFile(batchFile.build())
out << "File uploaded with ID: ${uploadedFile.id}"

// Use the file ID from the uploaded batch file
def fileId = "file-xxx"

// Create batch parameters for embeddings endpoint
def builder = openai.newBatchCreateParamsForEmbeddingsBuilder(fileId)

// Create the batch job
def batch = openai.createBatch(builder.build())
out << "Batch created with ID: ${batch.id}"
out << "
Status: ${batch.status}"

363 OpenAI APIs

Copyright © 2013-2025 AnswerModules Sagl

Once a batch job is created, you can check its status and retrieve results:

This example shows how to retrieve batch status and results. Batch status can be: validating,

in_progress, finalizing, completed, expired, cancelling, or cancelled. Once completed, you can access

the output file and process individual task results using their custom IDs.

Example 4¶

Listing All BatchesComments

List all batch jobs with pagination:

// Use the batch ID from the previous script
def batchId = "batch_xxx"

def batch = openai.retrieveBatch(batchId)
out << "Batch ID: ${batch.id}"
out << "
Status: ${batch.status}"
out << "
Created at: ${batch.createdAt}"
out << "
Completed at: ${batch.completedAt}"

// Check if batch is completed
if (batch.status == "completed") {

// Retrieve batch file results
def results = openai.retrieveBatchFileResult(batch)

// Display batch results
out << "
<h3>Batch Results:</h3>"

// Process results
results.taskResults.each { result ->

def embeddingResult = result.response
out << "
Task ID: ${result.customId}"
out << "
 Model: ${embeddingResult.model}"
out << "
 Embeddings:"

embeddingResult.data.eachWithIndex { embedding, index ->
def vector = embedding.embedding
out << "
 [${index}] Dimension: ${vector.size()}, Sample: ${vector.take(5)}"

}
}

}

// List batches with a limit
def page = openai.listBatches(openai.newBatchListParamsBuilder().limit(5).build())

// Display current page results
out << "Batches on current page:"
page.data.each { batch ->

out << "
 - ${batch.id}: ${batch.status}"
}

// Navigate through all pages
while (page.hasNextPage) {

page = page.nextPage
out << "
Batches on next page:"
page.data.each { batch ->

out << "
 - ${batch.id}: ${batch.status}"

364 OpenAI APIs

Copyright © 2013-2025 AnswerModules Sagl

Use pagination to navigate through all batch jobs and monitor their statuses.

Supported Request Types¶

Batch processing supports these request types:

Chat Completions: Use newBatchTaskForChatCompletionsBuilder() for chat-based interactions

Completions: Use newBatchTaskForCompletionsBuilder() for text completion requests

Embeddings: Use newBatchTaskForEmbeddingsBuilder() for embedding generation

Responses: Use newBatchTaskForResponsesBuilder() for response API requests

Batch Status Lifecycle¶

A batch job goes through several status stages:

validating: The batch file is being validated

in_progress: The batch is being processed

finalizing: The batch is completing and results are being prepared

completed: The batch has finished successfully

expired: The batch expired before completion

cancelling: The batch is being cancelled

cancelled: The batch was cancelled

Best Practices¶

Use Custom IDs: Always assign meaningful custom IDs to your tasks to easily identify

results

File Organization: Keep track of uploaded file IDs and batch IDs for result retrieval

Same Task Type: Ensure all tasks in a batch file are of the same type (all embeddings, all

chat completions, etc.)

}
}

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

When to Use Batch Processing

Use batch processing when you have many requests to process, immediate results are not required, and you want

to reduce API costs. Ideal for processing large document collections or generating embeddings for knowledge bases.

Completion Window

Batch requests are guaranteed to complete within 24 hours. Ensure your application can handle this delay.

365 OpenAI APIs

Copyright © 2013-2025 AnswerModules Sagl

OpenAI Evaluations (Evals)¶

Introduction¶

OpenAI Evaluations (Evals) let you test and measure AI model performance against specific

criteria. Use them to validate accuracy, compare models, and ensure quality.

What are Evals Used For?¶

Evals are used to:

Measure Model Performance: Evaluate how well a model performs on specific tasks or

datasets

Compare Models: Test different models against the same criteria to determine which

performs better

Quality Assurance: Ensure models meet quality standards before deployment

Continuous Monitoring: Track model performance over time and detect degradation

A/B Testing: Compare different model configurations or prompts

How Do Evals Work?¶

The process has two steps:

Eval Creation: Define the evaluation framework with data schema, testing criteria

(graders), and metadata

Eval Run Creation: Execute the evaluation with a test data file and model specification

You can reuse the eval definition for multiple runs to test different models or datasets.

Testing Criteria (Graders)¶

Evals support different types of graders to evaluate model outputs:

String Check Grader: Compares model output to a reference string using operations like

eq (equals), contains, starts_with, or ends_with

Text Similarity Grader: Measures semantic similarity using metrics like cosine similarity

or Jaccard similarity

Python Grader: Custom Python code for complex evaluation logic

Label Model Grader: Uses another AI model to classify or label the output

Score Model Grader: Uses an AI model to score the output on a scale

Example: Creating and Running an Eval with String Check Grader¶

This example demonstrates the complete workflow: creating an eval and then running it.

•

•

•

•

•

1.

2.

•

•

•

•

•

366 OpenAI APIs

Copyright © 2013-2025 AnswerModules Sagl

Step 1: Create the Eval¶

Create the EvalComments

This example creates an eval that:

Defines a data schema with ticket_text (the test case) and correct_label (the expected

answer)

Uses a String Check Grader to compare the model's output ({{ sample.output_text }}) with

the correct label ({{ item.correct_label }})

The eq operation checks for exact equality

The {{ sample.output_text }} and {{ item.correct_label }} syntax uses JSONPath to reference fields

from the evaluation data.

Step 2: Prepare the Eval Data File¶

Prepare the Eval Data File

Before creating an eval run, you need to prepare a JSONL (JSON Lines) file with your test data.

Each line must be a valid JSON object that matches your data schema. The file should be

structured as follows:

// Define the data schema for your test cases
def itemSchema = [

"type": "object",
"properties": [

"ticket_text": ["type": "string"],
"correct_label": ["type": "string"]

],
"required": ["ticket_text", "correct_label"]

]

// Create the eval with a String check grader
def evalParams = openai.newEvalCreateParamsBuilder()

.name("Ticket Classification Evaluation")

.dataSourceConfigOfCustom(itemSchema)

.addStringCheckGraderTestingCriterion(
"Match output to human label",
'{{ sample.output_text }}',
'{{ item.correct_label }}',
"eq"

)
.build()

// Create the eval
def eval = openai.createEval(evalParams)
out << "Eval created with ID: ${eval.id}"

•

•

•

{ "item": { "ticket_text": "My monitor won't turn on!", "correct_label": "Hardware" } }
{ "item": { "ticket_text": "I'm in vim and I can't quit!", "correct_label": "Software" } }
{ "item": { "ticket_text": "Best restaurants in Cleveland?", "correct_label": "Other" } }

367 OpenAI APIs

Copyright © 2013-2025 AnswerModules Sagl

Each line contains an item object with the fields defined in your schema (ticket_text and

correct_label in this example).

Step 3: Create an Eval Run¶

Create an Eval RunComments

This example:

Uploads a JSONL file containing test cases in the required format (each line is a JSON

object with an item containing ticket_text and correct_label fields)

Defines the prompt messages that will be sent to the model, using {{ item.ticket_text }}

to reference the input field

Creates an eval run that tests the gpt-4o model against the eval criteria

The model's responses will be automatically graded using the String Check Grader

defined in the eval, comparing {{ sample.output_text }} with {{ item.correct_label }}

You can retrieve the eval run results later to see how the model performed.

Step 4: Managing Eval Runs¶

// Use the eval ID from the previous script
def evalId = "eval-xxx"

// First, upload your test data file (JSONL format)
def dataFile = docman.getNodeByPath("TestData:eval_data.jsonl").content
def uploadedFile = openai.uploadFile(

openai.newFileCreateParamsBuilder("evals", dataFile).build()
)

// Define the input messages for the model
def inputMessages = [

openai.newEvalInputMessage(
"developer",
"You are an expert in categorizing IT support tickets. Given the support ticket below, categorize the request into one of Hardware, Software, or Other. Respond with only one of those words."

),
openai.newEvalInputMessage(

"user",
'{{ item.ticket_text }}' // Reference to the ticket_text field from your data

)
]

// Create eval run parameters for responses
def runParams = openai.newEvalRunCreateParamsForResponsesBuilder(

"test_run_001",
uploadedFile.id,
inputMessages,
"gpt-4o"

).build()

// Create and run the eval
def evalRun = openai.createEvalRun(evalId, runParams)
out << "Eval run created with ID: ${evalRun.id}"
out << "
Status: ${evalRun.status}"

•

•

•

•

368 OpenAI APIs

Copyright © 2013-2025 AnswerModules Sagl

Managing Eval RunsComments

Once you've created eval runs, you can manage them through various operations:

This example demonstrates how to:

List all runs associated with an eval

Retrieve details about a specific run, including its status and progress

Cancel a specific eval run

Delete an eval run

Eval runs can have different statuses such as queued, in_progress, completed, cancelled, or failed. Use

these operations to monitor and control your evaluation runs.

Managing Evals¶

You can manage your evals through various operations:

def evalId = "eval_xxx"
def runId = "evalrun_xxx"

// List all runs for an eval
def page = openai.listEvalRuns(evalId)
page.data.each { run ->

out << "
Run: ${run.id} - Status: ${run.status}"
}

// Retrieve a specific eval run
def run = openai.retrieveEvalRun(

runId,
openai.newEvalRunRetrieveParamsBuilder(evalId).build()

)
out << "Run status: ${run.status}"

// Cancel an eval run
openai.cancelEvalRun(runId, evalId)
out << "
Eval run cancelled"

// Delete an eval run
openai.deleteEvalRun(runId, evalId)
out << "
Eval run deleted"

•

•

•

•

369 OpenAI APIs

Copyright © 2013-2025 AnswerModules Sagl

Other Grader Types¶

In addition to String Check Grader, you can use:

Text Similarity Grader: addTextSimilarityTestingCriterion() - Measures semantic similarity

using cosine or Jaccard metrics

Python Grader: addPythonGraderTestingCriterion() - Custom Python code for complex

evaluation logic

Label Model Grader: addLabelModelTestingCriterion() - Uses another model to classify

outputs

Score Model Grader: addTestingCriterion() - Uses a model to score outputs on a scale

Each grader type is suited for different evaluation scenarios. Choose the one that best matches

your evaluation needs.

OpenAI Fine-Tuning¶

Introduction¶

// Use the eval ID from the previous script
def evalId = "eval-xxx"
// List all evals
def page = openai.listEvals(openai.newEvalListParamsBuilder().limit(10).build())
page.data.each { eval ->

out << "
Eval: ${eval.name} (ID: ${eval.id})"
}

// Retrieve a specific eval
def eval = openai.retrieveEval(evalId)

// Update an eval
out << openai.updateEval(evalId, openai.newEvalUpdateParamsBuilder().name("Updated Name").build())

// Delete an eval
out << openai.deleteEval(eval.id)

•

•

•

•

Cost Warning

Fine-tuning jobs can incur significant costs, with training costs potentially reaching up to $100 per hour depending

on the model and method used. Costs vary based on:

The base model being fine-tuned

The fine-tuning method (DPO, Supervised, or Reinforcement)

The size of your training dataset

Training duration

For the most current and detailed pricing information, refer to the OpenAI Pricing Documentation (https://

platform.openai.com/docs/pricing#fine-tuning). Always monitor your usage and costs when running fine-tuning

jobs.

•

•

•

•

370 OpenAI APIs

Copyright © 2013-2025 AnswerModules Sagl

https://platform.openai.com/docs/pricing#fine-tuning
https://platform.openai.com/docs/pricing#fine-tuning
https://platform.openai.com/docs/pricing#fine-tuning
https://platform.openai.com/docs/pricing#fine-tuning

OpenAI Fine-Tuning allows you to customize models for your specific use case by training them

on your own data. Fine-tuning improves model performance on specific tasks, enables you to

teach the model new behaviors, and can reduce costs by allowing you to use smaller models

effectively.

Fine-Tuning Methods¶

Module Suite supports three fine-tuning methods:

DPO (Direct Preference Optimization): Optimizes models using pairwise preference data,

teaching the model to favor certain outputs over others. Ideal for subjective quality

improvements like tone, style, or appropriateness.

Supervised Fine-Tuning: Trains models on input-output pairs, teaching them to follow

specific patterns or formats.

Reinforcement Learning: Uses reward models to guide training, suitable for complex

optimization scenarios.

Example: DPO Fine-Tuning¶

This example demonstrates how to create a DPO fine-tuning job:

Step 1: Prepare DPO Training Data¶

Prepare DPO Training DataComments

DPO requires pairs of responses where one is preferred over the other. Each sample needs: -

An input (the prompt/request) - A preferred output (the better response) - A non-preferred

output (the less desirable response)

1.

2.

3.

// Create a DPO fine-tuning file builder
def builderFile = openai.newDpoFineTuneFileRequestBuilder("my-dpo-training-data")

// Example: Create a chat completion request as input
def userQuestion = "How is the weather in the north pole?"
def requestBuilder = openai.newChatCompletionRequestBuilder()

.model("gpt-4o")

.addChatMessage("user", userQuestion)

.build()

// Create a preferred response (more desirable answer)
def preferredBuilder = openai.newChatCompletionRequestBuilder()

.model("gpt-4o")

.addChatMessage("assistant", "The weather at the North Pole is extreme, with very long, dark, and cold winters and constant daylight with cool summers.")

.build()
def preferredMessage = preferredBuilder.messages[0]

// Create a non-preferred response (less desirable answer)
def nonPreferredBuilder = openai.newChatCompletionRequestBuilder()

.model("gpt-4o")

.addChatMessage("assistant", "The weather is hot and humid")

.build()
def nonPreferredMessage = nonPreferredBuilder.messages[0]

371 OpenAI APIs

Copyright © 2013-2025 AnswerModules Sagl

Creates a DPO file with multiple samples. Each sample has an input, preferred response, and

non-preferred response.

Training Data Requirements:

The minimum number of examples you can provide for fine-tuning is 10

We see improvements from fine-tuning on 50–100 examples, but the right number for

you varies greatly and depends on the use case

We recommend starting with 50 well-crafted demonstrations and evaluating the results

Step 2: Create the Fine-Tuning Job¶

Create the Fine-Tuning JobComments

Creates a DPO fine-tuning job with the base model and training file. Jobs process

asynchronously and can take significant time depending on dataset size and model complexity.

Step 3: Managing Fine-Tuning Jobs¶

Managing Fine-Tuning JobsComments

You can monitor and manage your fine-tuning jobs:

// Create a DPO sample
def sample = openai.newDpoFineTuneSampleBuilder()

.input(requestBuilder)

.preferred(preferredMessage)

.nonPreferred(nonPreferredMessage)

.build()

// Add multiple samples to the file (you'll need many samples for effective training)
for (int i = 0; i < 50; i++) {

builderFile.addSample(sample)
}

// Upload the DPO training file
def uploadedFile = openai.uploadDpoFineTuneFile(builderFile.build())
out << "File uploaded with ID: ${uploadedFile.id}"

•

•

•

// Use the uploaded file ID
def fileId = uploadedFile.id

// Create fine-tuning job parameters with DPO method
def builder = openai.newFineTuneJobCreateParamsBuilder(

"gpt-4.1-mini-2025-04-14", // Base model to fine-tune
fileId // Training file ID

).methodDPO() // Use DPO fine-tuning method

// Create the fine-tuning job
def fineTuneJob = openai.createFineTuneJob(builder.build())
out << "Fine-tuning job created with ID: ${fineTuneJob.id}"
out << "
Status: ${fineTuneJob.status}"

372 OpenAI APIs

Copyright © 2013-2025 AnswerModules Sagl

List jobs with pagination, retrieve job details, and pause or resume jobs. Statuses:

validating_files, queued, running, succeeded, failed, cancelled, or paused.

Other Fine-Tuning Methods¶

In addition to DPO, you can use:

Supervised Fine-Tuning: Use methodSupervised() with newSupervisedFineTuneFileRequestBuilder()

and uploadSupervisedFineTuneFile() - Trains on input-output pairs

Reinforcement Learning: Use methodReinforcement() with reward models - Uses

reinforcement learning with human feedback

Model Context Protocol OpenAI integration mcp

// Use the finetune ID from the previous script
def fineTuneId = "ftjob-xxx"

// List all fine-tuning jobs
def page = openai.listFineTuneJobs()
page.data.each { job ->

out << "
Job: ${job.id} - Status: ${job.status} - Model: ${job.model}"
}

// Navigate through pages
while (page.hasNextPage) {

page = page.nextPage
page.data.each { job ->

out << "
Job: ${job.id} - Status: ${job.status}"
}

}

// Retrieve a specific fine-tuning job
def job = openai.retrieveFineTuneJob(fineTuneId)
out << "Status: ${job.status}"
out << "
Trained tokens: ${job.trainedTokens}"

// ONLY reinformecent job can be paused and resumed
// Pause a fine-tuning job
/*def pausedJob = openai.pauseFineTuneJob(job.id)
out << "
Job paused: ${pausedJob.status}"*/

// Resume a paused fine-tuning job
/*def resumedJob = openai.resumeFineTuneJob(job.id)
out << "
Job resumed: ${resumedJob.status}"*/

•

•

373 OpenAI APIs

Copyright © 2013-2025 AnswerModules Sagl

MCP

Integrate Model Context Protocol in your workflow¶

Introduction¶

The Model Context Protocol (MCP) is a standardized protocol that enables AI models to access

external tools and resources through a secure, capability-based negotiation system. This

protocol bridges the gap between AI models and external systems, allowing for dynamic tool

discovery, execution, and integration.

Module Suite plays a crucial role in seamlessly incorporating MCP into your enterprise content

management ecosystem. By bridging the gap between your organization's content repositories

and MCP-compatible servers, Module Suite empowers you to:

Extend AI capabilities: Leverage external tools and services through MCP servers,

expanding the functionality available to AI models.

Standardize tool integration: Use a consistent protocol for connecting AI models with

external resources, simplifying integration complexity.

Enable dynamic tool discovery: Automatically discover and utilize tools available on MCP

servers without hardcoding integrations.

Enhance AI workflows: Integrate MCP tools with OpenAI function calling, allowing AI

models to automatically execute external tools based on user requests.

Maintain security: Implement secure authentication mechanisms (OAuth2 or custom) to

protect access to external tools and resources.

Support flexible authentication: Choose between OAuth2 automatic authentication or

custom authorization mechanisms based on your security requirements.

By integrating MCP through Module Suite, organizations can harness the power of standardized

tool integration to transform their AI-powered workflows, leading to increased flexibility,

reduced integration complexity, and improved overall productivity.

1.

2.

3.

4.

5.

6.

MCP Integration Considerations

While MCP offers significant benefits, it's important to consider factors such as authentication requirements, server

compatibility, and network access when integrating MCP servers into your workflow. Module Suite provides the

necessary tools and interfaces to address these considerations effectively.

374 MCP

Copyright © 2013-2025 AnswerModules Sagl

Architecture and Networking¶

Module Suite acts as a central hub for communication between Extended ECM (xECM), MCP-

compatible servers, and AI services.

Here's an overview of how the networking and communication work:

flowchart TD

 subgraph ECM["Extended ECM (xECM)"]

 MS[Module Suite]

 end

 MCP[MCP Server]

 OAuth[OAuth Provider]

 OpenAI[OpenAI Service]

 MS <--> |Internal APIs| ECM

 MS <--> |MCP Protocol| MCP

 MS <--> |OAuth 2.0| OAuth

 MS <--> |Function Calling| OpenAI

 style ECM fill:#f9f,stroke:#333,stroke-width:2px

 style MS fill:#bbf,stroke:#333,stroke-width:2px

 style MCP fill:#bfb,stroke:#333,stroke-width:2px

 style OAuth fill:#fbb,stroke:#333,stroke-width:2px

 style OpenAI fill:#fbb,stroke:#333,stroke-width:2px

Integration with xECM¶

Module Suite runs directly on xECM, providing seamless access to all xECM APIs. This tight

integration allows for efficient data exchange and leveraging of xECM's content management

capabilities.

MCP Server Communication¶

Module Suite implements communication channels to MCP-compatible servers, which can be: -

Public internet services - VPN-accessible services - On-premises solutions

The mcp Content Script service includes methods to programmatically connect to MCP servers,

list available tools, execute tools, and convert MCP tools to OpenAI function calling format to

be used with the openai service directly.

MCP Protocol Support

375 MCP

Copyright © 2013-2025 AnswerModules Sagl

Authentication Mechanisms¶

Module Suite supports two authentication modes for MCP integration:

OAuth2 Authentication (automatic): Full OAuth2 flow with automatic token management

Custom Authorization (manual): Flexible authentication using custom headers or tokens

Typical Communication Sequence¶

Below is a diagram illustrating a typical communication sequence when using Module Suite

with xECM, an MCP server, and OpenAI:

sequenceDiagram

 participant User

 participant xECM

 participant Module Suite

 participant MCP Server

 participant OAuth Provider

 participant OpenAI

 User->>xECM: Request AI operation

 xECM->>Module Suite: Pass request

 Module Suite->>Module Suite: Check authentication

 alt Authentication required

 Module Suite->>OAuth Provider: Request authorization

 OAuth Provider-->>Module Suite: Return tokens

 end

 Module Suite->>MCP Server: List available tools

 MCP Server-->>Module Suite: Return tool definitions

 Module Suite->>OpenAI: Send request with MCP tools

 OpenAI-->>Module Suite: Request tool execution

 Module Suite->>MCP Server: Execute tool

 MCP Server-->>Module Suite: Return tool result

 Module Suite->>OpenAI: Return tool result

 OpenAI-->>Module Suite: Return final response

 Module Suite->>xECM: Process and format response

 xECM->>User: Display result

Module Suite features comprehensive support for the Model Context Protocol specification, enabling flexible

integration with various MCP-compatible servers. This allows for standardized tool integration while maintaining a

consistent interface.

1.

2.

376 MCP

Copyright © 2013-2025 AnswerModules Sagl

Components of the MCP Service Integration¶

Module Suite provides a comprehensive set of components to enable seamless integration

with MCP services. These components work together to offer a robust and flexible MCP-

enhanced experience within the Extended ECM environment.

Content Script Service¶

MCP Extension Package Service¶

The MCP service is a dedicated Content Script extension package service specifically designed

for Model Context Protocol integrations. Key features include:

Multi-profile support for flexible configuration

Comprehensive implementation of MCP protocol features

OAuth2 and custom authorization support

Tool discovery and execution capabilities

OpenAI function calling integration

graph TD

 A[Module Suite] --> B[MCP Service]

 B --> C[Tool Discovery]

 B --> D[Tool Execution]

 B --> E[OpenAI Integration]

 B --> F[Authentication]

 F --> G[OAuth2]

 F --> H[Custom Authorization]

 style A fill:#f9f,stroke:#333,stroke-width:2px

 style B fill:#bbf,stroke:#333,stroke-width:2px

Integration Use Cases¶

Module Suite offers various capabilities for integrating MCP-powered functionalities into your

Extended ECM environment. Let's explore common use cases and how to implement them.

Tool Discovery¶

Tool discovery allows you to explore and understand the capabilities available on an MCP

server. This functionality is valuable for implementing:

Dynamic tool integration without hardcoding

Capability-based feature negotiation

Tool documentation and schema inspection

•

•

•

•

•

•

•

•

377 MCP

Copyright © 2013-2025 AnswerModules Sagl

Integration planning and development

Example: Listing Available Tools¶

Here's a simple example of how to discover tools available on an MCP server:

Basic ExampleComments

This code validates the MCP profile configuration, retrieves the list of available tools from the

MCP server, and displays each tool's name and description.

The listTools method returns a result object containing all tools available on the MCP server.

Each tool includes metadata such as name, description, and parameter schemas.

Tool Execution¶

Tool execution allows the AI to interact directly with external systems through MCP servers,

performing actions or retrieving information as needed. This powerful feature enables the AI to

manipulate content and execute operations within external systems.

Example: Executing a Tool¶

In this example, we'll demonstrate how to execute a tool on an MCP server:

Basic Tool ExecutionComments

•

try {
mcp.validateProfile("mcp-profile")
def toolsResult = mcp.listTools("mcp-profile")

toolsResult.tools.each { tool ->
out << "<p>${tool.name}: ${tool.description}</p>"

}
} catch (Exception e) {

log.error("Error listing tools: ${e.message}", e)
out << "An error occurred: " + e.getMessage()

}

Use Autocompletion

Remember to use the auto-completion feature of the editor (CTRL+Space) to explore available configuration

options when working with the MCP service.

try {
mcp.validateProfile("mcp-profile")

def result = mcp.executeTool(
"search_documents",

378 MCP

Copyright © 2013-2025 AnswerModules Sagl

This example demonstrates several key concepts:

Profile Validation: The validateProfile method ensures the MCP profile is properly

configured and authenticated.

Tool Execution: The executeTool method takes the tool name, parameters, and profile ID to

execute the tool on the MCP server.

Result Processing: The method returns a CSMcpCallToolResult object that contains:

content: List of content items returned by the tool (text, image, audio, resource, or

resource_link)

isError: Boolean indicating if the tool execution resulted in an error

structuredContent: Optional JSON object representing the structured result of the

tool call

meta: Map containing metadata for the result

Error Handling: The implementation includes error handling to manage potential issues

during tool execution.

MCP Tools with OpenAI Integration¶

MCP tools can be seamlessly integrated with OpenAI function calling, allowing AI models to

automatically discover and execute external tools based on user requests. This integration

enables powerful workflows where AI models can leverage external capabilities dynamically.

Example: Using MCP Tools with OpenAI¶

OpenAI Integration ExampleComments

[
query: "contract",
limit: 10

],
"mcp-profile"

)

result.content.each { content ->
if (content.type == "text") {

out << "<p>${content.text}</p>"
}

}
} catch (Exception e) {

log.error("Error executing tool: ${e.message}", e)
out << "An error occurred: " + e.getMessage()

}

•

•

•

◦

◦

◦

◦

•

Tool Parameter Validation

Ensure that tool parameters match the schema defined by the MCP server. Invalid parameters will result in tool

execution failures.

379 MCP

Copyright © 2013-2025 AnswerModules Sagl

This example demonstrates the powerful integration between MCP and OpenAI:

Tool Conversion: The listToolsAsOpenAIResponseTools method converts MCP tools into

OpenAI function calling format, making them available to AI models.

Automatic Tool Discovery: All available MCP tools are automatically added to the OpenAI

request, allowing the AI to choose which tools to use based on the user's request.

Automatic Execution: When the AI decides to call a function, the executor automatically

executes the corresponding MCP tool, handling the complexity of tool invocation.

Seamless Integration: The integration is transparent to the AI model, which simply sees

function calling capabilities without needing to know about the underlying MCP protocol.

def profileId = 'mcp-profile'

try {
// Validate profile
mcp.validateProfile(profileId)

// Get all MCP tools as OpenAI response functions
def tools = mcp.listToolsAsOpenAIResponseTools(profileId)

// Build OpenAI response request with all tools
def responseBuilder = openai.newResponseRequestBuilder()

.model("gpt-4o")

.instructions("You are a helpful assistant.")

.input("Write a file and list all files in the directory")

.toolChoiceMode("auto")

// Add all tools as function tools
tools.each { tool -> responseBuilder.addFunctionTool(tool) }

def request = responseBuilder.build()
def result = openai.createResponse(request)

// Process response types
def responseTypes = result.getResponseType()

responseTypes.eachWithIndex { type, index ->
if (type == "function_call") {

// Handle function call - executor automatically executes MCP tool
result.handleFunctionCall({ functionCallId, callId, status, name, arguments ->

def selectedTool = tools.find { it.name == name }
def functionResult = selectedTool?.executor(arguments)
return functionResult

}, index)
}

}
} catch (Exception e) {

log.error("Error in OpenAI integration: ${e.message}", e)
out << "An error occurred: " + e.getMessage()

}

•

•

•

•

Benefits of MCP-OpenAI Integration

380 MCP

Copyright © 2013-2025 AnswerModules Sagl

Core Concepts¶

Capability-Based Negotiation¶

The Model Context Protocol uses a capability-based negotiation system where clients and

servers explicitly declare their supported features during initialization. Capabilities determine

which protocol features and primitives are available during a session.

Servers declare capabilities like tool support

Clients declare capabilities for tool invocation and execution

Both parties must respect declared capabilities throughout the session

Additional capabilities can be negotiated through extensions to the protocol

The following diagram illustrates the MCP session lifecycle with tool listing and execution:

sequenceDiagram

 participant Client as Client

 participant Server as Server

 Client->>Server: Initialize client

 Server->>Client: Initialize session with capabilities

 Client->>Server: Respond with supported capabilities

 Client->>Server: List tools

 Server->>Client: Return available tools

 loop Tool Execution

 Client->>Server: Execute tool with parameters

This integration offers several advantages:

Dynamic Tool Discovery: AI models can automatically discover and use new tools as they become available

on MCP servers.

Standardized Interface: MCP provides a standardized way to expose tools, making integration consistent

across different services.

Flexible Execution: Tools can be executed automatically based on AI decisions, reducing the need for

manual intervention.

Extensibility: New tools can be added to MCP servers without requiring changes to the AI integration code.

1.

2.

3.

4.

Tool Configuration

When creating a new MCP tool execution, it is possible to provide the tool configuration in the form of a Map

object. The structure of this map is compatible with the JSON format MCP uses to define tool calls. This is the best

approach to handle complex tool executions.

•

•

•

•

381 MCP

Copyright © 2013-2025 AnswerModules Sagl

 Server->>Client: Return tool result

 end

 Client->>Server: Terminate

 Server->>Client: End session

Each capability unlocks specific protocol features for use during the session. For example:

Implemented server features must be advertised in the server's capabilities

Tool invocation requires the server to declare tool capabilities

Tool listing requires the server to declare tool support in its capabilities

This capability negotiation ensures clients and servers have a clear understanding of

supported functionality while maintaining protocol extensibility.

Tools¶

One of the core concepts when working with MCP is the "Tool", which represents a callable

function that can be executed on the MCP server.

When defining a tool execution, you will be able to provide the tool name and parameters. The

tool execution returns results that can contain text, images, resources, or other content types.

MCP tools can also be converted to OpenAI function calling format, allowing AI models to

automatically execute tools through the MCP service.

•

•

•

382 MCP

Copyright © 2013-2025 AnswerModules Sagl

Configuration¶

Base Configuration

(https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-

configuration) parameters description, default and purpose.

MCP Service Configuration Overview¶

The Module Suite Extension for MCP supports two authentication modes:

OAuth2 Authentication (automatic): Requires full OAuth configuration

Custom Authorization (manual): Only requires the MCP base URI, OAuth can be bypassed

1.

2.

383 MCP

Copyright © 2013-2025 AnswerModules Sagl

https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration
https://developer.answermodules.com/manuals/current/administration/modulesuite/#base-configuration

OAuth2 Configuration¶

If you want to use OAuth2 automatic authentication, it is mandatory to set an mcp profile in the

Module Suite Base Configuration with the following properties:

Property Description Example Value

mcp_uri MCP server base URI https://mcp.example.com/mcp

client_id OAuth2 client ID your-client-id

client_secret OAuth2 client secret your-secret-key

auth_uri OAuth2 authorization endpoint https://auth.example.com/oauth/authorize

token_uri OAuth2 token endpoint https://auth.example.com/oauth/token

refresh_uri OAuth2 refresh token endpoint https://auth.example.com/oauth/refresh

redirect_uri Content Server redirect URL https://your-domain:8443/otcs/cs

scope OAuth2 scope read write or empty

additional_props Additional properties specific for MCP additional_key@additional_value

Custom Authorization Configuration¶

OAuth can be bypassed by providing an authorization closure to the validateProfile method.

This allows authentication with any server using custom headers or authentication

mechanisms. When using custom authorization, the minimum required configuration is:

Property Description Example Value

mcp_uri MCP server base URI https://mcp.example.com/mcp

All other OAuth-related properties (client_id, client_secret, auth_uri, etc.) are only required for

OAuth automatic authentication and are not used when using custom authorization.

OAuth2 Flow

The extension handles the OAuth authentication flow to MCP but the first time an mcp profile is used, it is

necessary to authenticate the application on the MCP server website.

Redirect URI Configuration

The redirect_uri should point to your Content Server instance and will be used during the OAuth authorization

flow. Ensure this URL is accessible and properly configured in your OAuth provider.

Security Considerations

384 MCP

Copyright © 2013-2025 AnswerModules Sagl

Authentication¶

The extension supports two authentication modes: OAuth2 automatic authentication and

custom authorization via closure.

OAuth2 Authentication¶

The MCP integration uses OAuth 2.0 for secure authentication. The following sequence diagram

illustrates the complete authentication flow:

sequenceDiagram

 participant User as User

 participant CS as Content Server

 participant OAuth as OAuth Provider

 participant MCP as MCP Server

 User->>CS: Request MCP operation

 CS->>CS: Check for valid access token

 alt No valid access token

 CS->>CS: Check for refresh token

 alt No refresh token

 CS->>User: Redirect to authorization

 User->>OAuth: Authorize application

 OAuth->>CS: Return authorization code

 CS->>OAuth: Exchange code for tokens

 OAuth->>CS: Return access & refresh tokens

 CS->>CS: Store tokens securely

 else Refresh token exists

 CS->>OAuth: Request new access token

 OAuth->>CS: Return new access token

 CS->>CS: Store updated token

 end

 CS->>MCP: Make API request with token

 MCP->>CS: Return response

 CS->>User: Return result

 else Valid access token exists

 CS->>MCP: Make API request with token

 MCP->>CS: Return response

 CS->>User: Return result

 end

When using custom authorization, ensure that your authentication mechanism is secure and follows your

organization's security policies. API keys and tokens should be stored securely and not exposed in logs or public

configurations.

385 MCP

Copyright © 2013-2025 AnswerModules Sagl

Token Management¶

The extension automatically handles token refresh:

Access tokens are refreshed automatically when expired

Refresh tokens are used to obtain new access tokens

Tokens are stored securely in Content Server's system data

Automatic refresh occurs transparently during API calls

Custom Authorization¶

OAuth can be bypassed by providing an authorization closure to the validateProfile method.

This allows authentication with any server using custom headers, API keys, or other

authentication mechanisms. When using custom authorization, only the mcp_uri configuration

property is required.

EXAMPLE: Authorizing the application on the MCP endpoint¶

The script invokes the Module Suite Extension for MCP validateProfile method which checks

the configuration properties for the provided profile ID, checks the authorization code and, if it

doesn't exists in the system, throws an AuthenticationException to indicate that the login to

MCP is required. This exception is designed to be caught so that the authorization process can

be initiated by redirecting the user to the OAuth authorization URL.

EXAMPLE: Using custom authorization¶

The authorization closure receives a request builder that can be customized with headers,

authentication tokens, or any other HTTP request modifications needed for your MCP server.

•

•

•

•

def profileId = 'mcp-profile'

try {
mcp.validateProfile(profileId)
out << "Successfully logged on MCP with the profile ${profileId}"

} catch(AuthenticationException e) {
def redirectUrl = "${url}/runcs/${self.ID}"
def authURL = mcp.getAuthorizationUrl(redirectUrl, profileId)
redirect authURL

}

def profileId = 'mcp-profile'

// Define custom authorization closure
Closure authorizationClosure = { builder ->

builder.header("OTCSTicket", "xxx-token-here")
}

// Validate profile with custom authorization (OAuth is bypassed)
mcp.validateProfile(profileId, authorizationClosure)

out << "Successfully authenticated with custom authorization"

386 MCP

Copyright © 2013-2025 AnswerModules Sagl

This approach allows you to authenticate with servers that use non-OAuth authentication

mechanisms such as API keys, custom tokens, or Content Server tickets.

Troubleshooting¶

Common Issues¶

Authentication Errors¶

Problem: AuthenticationException when calling MCP methods

Solution: Verify profile configuration and ensure user has completed OAuth flow

Configuration Errors¶

Problem: ConfigurationException when validating profile

Solution: Check all required properties are set and property names match exactly

Tool Execution Failures¶

Problem: Tools fail to execute or return errors

Solution: Validate tool parameters match schema and check MCP server connectivity

Choosing the Right Authentication Method

When selecting an authentication method for your MCP integration, consider the following factors:

OAuth2: Use when the MCP server supports OAuth2 and you want automatic token management

Custom Authorization: Use when you need to integrate with servers using non-standard authentication or

when you want more control over the authentication process

•

•

try {
mcp.validateProfile("mcp-profile")

} catch (AuthenticationException e) {
def authURL = mcp.getAuthorizationUrl("${url}/runcs/${self.ID}", "mcp-profile")
redirect authURL

}

try {
mcp.validateProfile("mcp-profile")

} catch (ConfigurationException e) {
log.error("Configuration error: ${e.message}")
out << "Please check your profile configuration: ${e.message}"

}

387 MCP

Copyright © 2013-2025 AnswerModules Sagl

Additional Resources¶

Model Context Protocol Specification (https://modelcontextprotocol.io/)

MCP GitHub Repository (https://github.com/modelcontextprotocol)

Module Suite Documentation (https://developer.answermodules.com/manuals/current/)

try {
def result = mcp.executeTool("tool_name", [param: "value"], "mcp-profile")
if (result.isError) {

log.error("Tool execution failed")
result.content.each { content ->

log.error("Error: ${content.text}")
}

}
} catch (CSMcpServiceException e) {

log.error("Service error: ${e.message}", e)
}

•

•

•

388 MCP

Copyright © 2013-2025 AnswerModules Sagl

https://modelcontextprotocol.io/
https://modelcontextprotocol.io/
https://github.com/modelcontextprotocol
https://github.com/modelcontextprotocol
https://developer.answermodules.com/manuals/current/
https://developer.answermodules.com/manuals/current/

Extension: AdobeSign

Adobe Sign Integration Guide¶

This comprehensive guide covers the Module Suite Extension for Adobe Sign, providing

detailed documentation for setting up and using document signing processes within your

Content Server environment.

Overview¶

The Module Suite Extension for Adobe Sign enables seamless integration between Content

Server and Adobe Sign's electronic signature platform. This extension provides a

comprehensive API for:

Creating and managing signing agreements

Uploading documents for signature

Managing participants and workflows

Tracking agreement status

Downloading signed documents

Setting up webhooks for real-time notifications

Managing reminders and notifications

Key Benefits¶

Streamlined Workflow: Direct integration with Content Server eliminates manual

document handling

Flexible Participant Management: Support for multiple signature types and participant

roles

Real-time Monitoring: Webhook support for instant status updates

Comprehensive API: Full access to Adobe Sign's REST API capabilities

Security: OAuth 2.0 (https://oauth.net/2/) authentication with token management

System Requirements¶

Before implementing the Adobe Sign integration, ensure your system meets the following

requirements:

•

•

•

•

•

•

•

•

•

•

•

•

389 Extension: AdobeSign

Copyright © 2013-2025 AnswerModules Sagl

https://oauth.net/2/
https://oauth.net/2/

Adobe Sign Requirements¶

Adobe Sign Developer Account (https://opensource.adobe.com/acrobat-sign/

developer_guide/index.html#get-a-free-developer-account)

Adobe Sign application with appropriate permissions

Valid Adobe Sign API credentials

Content Server Requirements¶

Module Suite Base Configuration

Content Script API support

Network access to Adobe Sign endpoints

Network Requirements¶

Outbound HTTPS access to Adobe Sign APIs

Inbound HTTPS access for webhook callbacks (if using webhooks)

Firewall configuration to allow Adobe Sign IP ranges

For detailed system requirements, refer to the official Adobe Sign documentation (https://

helpx.adobe.com/sign/system-requirements.html).

Configuration¶

Step 1: Create Adobe Sign Application¶

Log into your Adobe Sign Developer Console (https://secure.eu1.adobesign.com/public/

login#pageId::API_APPLICATIONS)

Create a new application following the Quickstart (https://opensource.adobe.com/

acrobat-sign/developer_guide/gstarted.html)

Configure the OAuth redirect URI (https://opensource.adobe.com/acrobat-sign/

developer_guide/gstarted.html#configure-the-redirect-uri-on-your-server) to https://your-

domain/your-otcs-path/runcs/am/authflow/adobesign-profile-id

Note down the following credentials:

Client ID

Client Secret

Authorization URI

Token URI

Refresh URI

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

7.

8.

9.

390 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

https://opensource.adobe.com/acrobat-sign/developer_guide/index.html#get-a-free-developer-account
https://opensource.adobe.com/acrobat-sign/developer_guide/index.html#get-a-free-developer-account
https://opensource.adobe.com/acrobat-sign/developer_guide/index.html#get-a-free-developer-account
https://opensource.adobe.com/acrobat-sign/developer_guide/index.html#get-a-free-developer-account
https://helpx.adobe.com/sign/system-requirements.html
https://helpx.adobe.com/sign/system-requirements.html
https://helpx.adobe.com/sign/system-requirements.html
https://helpx.adobe.com/sign/system-requirements.html
https://secure.eu1.adobesign.com/public/login#pageId::API_APPLICATIONS
https://secure.eu1.adobesign.com/public/login#pageId::API_APPLICATIONS
https://secure.eu1.adobesign.com/public/login#pageId::API_APPLICATIONS
https://secure.eu1.adobesign.com/public/login#pageId::API_APPLICATIONS
https://opensource.adobe.com/acrobat-sign/developer_guide/gstarted.html
https://opensource.adobe.com/acrobat-sign/developer_guide/gstarted.html
https://opensource.adobe.com/acrobat-sign/developer_guide/gstarted.html
https://opensource.adobe.com/acrobat-sign/developer_guide/gstarted.html
https://opensource.adobe.com/acrobat-sign/developer_guide/gstarted.html#configure-the-redirect-uri-on-your-server
https://opensource.adobe.com/acrobat-sign/developer_guide/gstarted.html#configure-the-redirect-uri-on-your-server
https://opensource.adobe.com/acrobat-sign/developer_guide/gstarted.html#configure-the-redirect-uri-on-your-server
https://opensource.adobe.com/acrobat-sign/developer_guide/gstarted.html#configure-the-redirect-uri-on-your-server

Step 2: Configure Module Suite Profile¶

Create an Adobe Sign profile in the Module Suite Base Configuration with the following

properties:

Property Description Example Value

client_id
Adobe Sign application client

ID
3AAABLblqZhA...

client_secret
Adobe Sign application client

secret
your-secret-key

auth_uri Authorization endpoint
https://secure.eu1.adobesign.com/public/oauth/

v2

token_uri Token endpoint https://api.eu1.adobesign.com/oauth/v2/token

refresh_uri Refresh token endpoint https://api.eu1.adobesign.com/oauth/v2/refresh

redirect_uri Content Server redirect URL https://your-domain:8443/otcs/cs

scope Application permissions agreement_write+agreement_read+agreement_send

additional_props Additional properties api_access_point@,web_access_point@

web_app_client_id Web application client ID UB7E5BXCXY

Step 3: Profile Configuration Example¶

Authentication Flow¶

The Adobe Sign integration uses OAuth 2.0 for secure authentication. The following sequence

diagram illustrates the complete authentication flow:

sequenceDiagram

 participant User as User

 participant CS as Content Server

 participant AS as Adobe Sign

// Example profile configuration
def profileConfig = [

client_id: "3AAABLblqZhA...",
client_secret: "your-secret-key",
auth_uri: "https://secure.eu1.adobesign.com/public/oauth/v2",
token_uri: "https://api.eu1.adobesign.com/oauth/v2/token",
refresh_uri: "https://api.eu1.adobesign.com/oauth/v2/refresh",
redirect_uri: "https://your-domain:8443/otcs/cs",
scope: "agreement_write+agreement_read+agreement_send",
additional_props: "api_access_point@,web_access_point@",
web_app_client_id: "UB7E5BXCXY"

]

391 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

 participant API as Adobe Sign API

 User->>CS: Request Adobe Sign operation

 CS->>CS: Check for valid access token

 alt No valid access token

 CS->>AS: Request valid access token using refresh token

 alt Refresh token invalid

 AS->>CS: Return authentication error

 CS->>User: Authentication error, contact the Administrator

 else Refresh token valid

 AS->>CS: Return access

 CS->>CS: Store tokens securely

 CS->>API: Make API request with token

 API->>CS: Return response

 CS->>User: Return result

 end

 else Valid access token exists

 CS->>API: Make API request with token

 API->>CS: Return response

 CS->>User: Return result

 end

Initial Authentication¶

The first time you use an Adobe Sign profile, you must authenticate the application:

Token Management¶

The extension automatically handles token refresh:

Access tokens expire after 1 hour

Refresh tokens expire after 60 days of inactivity

Tokens are stored securely in Content Server's system data

def profileId = 'adobesign-profile'

try {
// Validate profile and check for existing authentication
adobesign.validateProfile(profileId)
out << "Successfully authenticated with Adobe Sign profile: ${profileId}"

} catch(AuthenticationException e) {
// Generate authorization URL and redirect user
def redirectUrl = "${url}/runcs/${self.ID}"
def authURL = adobesign.getAuthorizationUrl(profileId, redirectUrl)

log.info("Redirecting to Adobe Sign authorization: ${authURL}")
redirect authURL

}

•

•

•

392 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Automatic refresh occurs when needed

Core Concepts¶

Agreements¶

An Agreement is the central concept in Adobe Sign, representing a complete signing

transaction. Each agreement contains:

Documents: Files to be signed

Participants: People who need to sign or approve, and in what order they need to do so

Status: Current state of the agreement

Agreement States¶

stateDiagram-v2

 [*] --> DRAFT: Create Agreement

 DRAFT --> AUTHORING: Start Editing

 AUTHORING --> IN_PROCESS: Send for Signature

 IN_PROCESS --> COMPLETED: All Signatures Complete

 IN_PROCESS --> CANCELLED: Cancel Agreement

 IN_PROCESS --> EXPIRED: Time Expired

 COMPLETED --> [*]

 CANCELLED --> [*]

 EXPIRED --> [*]

 note right of DRAFT

 Agreement created but not sent

 end note

 note right of AUTHORING

 Documents can be modified

 end note

 note right of IN_PROCESS

 Active signing workflow

 end note

Participant Roles¶
Role Description Use Case

SIGNER Must sign the document Primary signers

APPROVER Must approve the document Management approval

•

•

•

•

393 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Role Description Use Case

ACCEPTOR Must accept terms Contract acceptance

FORM_FILLER Must fill out forms Data collection

CERTIFIED_RECIPIENT Receives copy after signing Audit trail

NOTARY_SIGNER Notarization required Legal documents

Document Types¶

Transient Documents¶

Temporary documents uploaded for specific agreements

Expire after 7 days

Used for one-time signing processes

Library Documents¶

Reusable document templates

Stored permanently in Adobe Sign

Ideal for standard contracts and forms

API Reference¶

Service Methods¶

Authentication & Configuration¶
Method Description Parameters

validateProfile(profileId)
Validates configuration

and authentication
profileId (optional)

getAuthorizationUrl(profileId,

redirectUrl, additionalParams)

Gets OAuth

authorization URL

profileId, redirectUrl,

additionalParams (optional)

isClientIdValid(clientId) Validates client ID clientId

Document Management¶
Method Description Parameters

uploadDocument(document,

profileId)

Upload single

document

document (CSDocument/CSResource/

File), profileId

uploadDocuments(documents,

profileId)

Upload multiple

documents
documents (List), profileId

•

•

•

•

•

•

394 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Agreement Management¶
Method Description Parameters

createAndSendAgreement(documents, name,

participants, message, profileId)

Create and send

agreement

documents, agreementName,

participants, message,

profileId

createAgreementDraft(documents, name,

participants, message, profileId)

Create draft

agreement

documents, agreementName,

participants, message,

profileId

getAgreementStatus(agreementId, profileId)
Get agreement

status
agreementId, profileId

getFullAgreementStatus(agreementId, profileId)
Get complete

agreement info
agreementId, profileId

updateAgreementState(agreementId, state,

comment, notifyOthers, profileId)

Update

agreement state

agreementId, state, comment,

notifyOthers, profileId

Document Retrieval¶
Method Description Parameters

downloadAgreement(agreementId, profileId)
Download combined

PDF
agreementId, profileId

downloadDocument(agreementId, documentId,

profileId)

Download specific

document

agreementId, documentId,

profileId

getAuditTrail(agreementId, profileId) Get audit trail PDF agreementId, profileId

Builder Classes¶

The service provides several builder classes for constructing complex objects:

Agreement Request Builder¶

Participant Set Builder¶

def agreementRequest = adobesign.newAgreementRequestBuilder()
.withName("Contract Agreement")
.withMessage("Please review and sign this contract")
.withElectronicSignature()
.inProcess()
.withExpirationTime(new Date() + 30) // 30 days from now
.enableDocumentVisibility()
.build()

395 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

File Info Builder¶

Usage Examples¶

The following examples demonstrate how to use the Module Suite Extension for Adobe Sign:

Basic Agreement Creation

Advanced Agreement with Multiple Participants

Using JSON Configuration

Library Template Management

Agreement Status Monitoring

Basic Agreement Creation¶

def participantSet = adobesign.newParticipantSetInfoBuilder()
.withRole("SIGNER")
.withOrder(1)
.addRecipient(users.current) // Current user
.addRecipient([email: "user@example.com", name: "John Doe"])
.build()

def fileInfo = adobesign.newFileInfoBuilder()
.withTransientDocumentId("transient-doc-id")
.withLabel("Contract Document")
.build()

•

•

•

•

•

try {
// 1. Retrieve document from Content Server
def contract = docman.getDocument(1234567)

// 2. Upload document to Adobe Sign
def documentId = adobesign.uploadDocument(contract)

// 3. Create participant set
def participants = [

adobesign.createSignerGroup([
[email: "homer@example.com", name: "Homer J. Simpson"]

])
]

// 4. Create and send agreement
def agreementId = adobesign.createAndSendAgreement(

[documentId],
"Springfield Nuclear Power Plant - Employment Contract",
participants,
"Dear Homer, please sign the employment contract."

)

out << "Agreement created successfully with ID: ${agreementId}"

} catch (Exception e) {
log.error("Error creating agreement: ${e.message}", e)
out << "Error: ${e.message}"

}

396 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Advanced Agreement with Multiple Participants¶

Using JSON Configuration¶

For complex agreements, you can use JSON configuration:

try {
// Upload multiple documents
def documents = adobesign.uploadDocuments([

docman.getDocument(1234567),
docman.getDocument(1234568)

])

// Create complex participant workflow
def participants = [

// First: Legal team approval
adobesign.createParticipantSet([

[email: "legal@company.com", name: "Legal Team"]
], 1, "APPROVER"),

// Second: Department heads
adobesign.createParticipantSet([

[email: "hr@company.com", name: "HR Manager"],
[email: "finance@company.com", name: "Finance Manager"]

], 2, "SIGNER"),

// Third: Final approval
adobesign.createParticipantSet([

[email: "ceo@company.com", name: "CEO"]
], 3, "SIGNER")

]

// Create agreement with custom configuration
def agreementId = adobesign.createAndSendAgreement(

documents,
"Multi-Party Service Agreement",
participants,
"Please review and sign the attached service agreement. This document requires approval from legal, department heads, and final CEO approval."

)

out << "Complex agreement created: ${agreementId}"

} catch (Exception e) {
log.error("Error creating complex agreement: ${e.message}", e)

}

try {
def documents = adobesign.uploadDocuments([

docman.getNode(2350027),
docman.getNode(2349903)

])

def agreementConfig = [
participantSetsInfo: [

[
role: "SIGNER",
memberInfos: [

[email: "homer@example.com", name: "Homer J. Simpson"],
[email: "marge@example.com", name: "Marge Simpson"]

],
order: 1

]

397 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Library Template Management¶

Agreement Status Monitoring¶

],
name: "Family Contract Agreement",
signatureType: "ESIGN",
fileInfos: documents.collect { [transientDocumentId: it] },
state: "IN_PROCESS",
message: "Family contract requiring both signatures",
ccs: [

[email: "lisa@example.com"],
[email: "bart@example.com"]

],
locale: 'en_US',
expirationTime: new Date() + 14 // 14 days from now

]

def agreementId = adobesign.sendAgreement(agreementConfig)
out << "JSON-configured agreement created: ${agreementId}"

} catch (Exception e) {
log.error("Error creating JSON agreement: ${e.message}", e)

}

try {
// Upload documents for template
def uploadedDocs = adobesign.uploadDocuments([

docman.getDocument(1234567),
docman.getDocument(1234568)

])

// Create library files
def libraryFiles = uploadedDocs.collect { docId ->

adobesign.newLibraryFileBuilder()
.withTransientDocumentId(docId)
.build()

}

// Create template
def template = adobesign.newTemplateRequestBuilder()

.withName("Standard Contract Template")

.shareWithUser()

.withTemplateTypeDocument()

.withFileInfos(libraryFiles)

.build()

def templateId = adobesign.createLibraryTemplate(template)
out << "Library template created: ${templateId}"

} catch (Exception e) {
log.error("Error creating library template: ${e.message}", e)

}

try {
def agreementId = "your-agreement-id"

// Get basic status
def status = adobesign.getAgreementStatus(agreementId)
out << "<p>Agreement Status: ${status}</p>"

398 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Advanced Features¶

Reminder Management¶

Basic Reminder¶

Scheduled Reminders¶

// Get detailed status
def fullStatus = adobesign.getFullAgreementStatus(agreementId)
out << "<p>Detailed Status: ${fullStatus}</p>"

// Check if signed

if (status == "SIGNED") {
// Download signed documents
def responseBody = adobesign.downloadAgreement(agreementId)
if (responseBody) {

CSResource signedPdf = docman.getTempResource("signed-contract.pdf", ".pdf")
signedPdf.content.withOutputStream { os ->

os << responseBody.byteStream()
}

}
}

} catch (Exception e) {
log.error("Error monitoring agreement: ${e.message}", e)

}

try {
def agreementId = "your-agreement-id"

// Send immediate reminder to next signers
def reminderId = adobesign.sendImmediateReminder(

agreementId,
"Please sign the contract as soon as possible."

)

out << "Reminder sent: ${reminderId}"

} catch (Exception e) {
log.error("Error sending reminder: ${e.message}", e)

}

try {
def agreementId = "your-agreement-id"
//Retrieve the IDs of the next signers in the flow
def participantIds = adobesign.getNextSignersIds(agreementId)

// Create reminder with custom schedule
def reminderId = adobesign.sendReminder(

agreementId,
participantIds,
"Friendly reminder to complete your signature",
24, // First reminder after 24 hours
"AGREEMENT_AVAILABILITY", // Start counting from when agreement becomes available
"DAILY_UNTIL_SIGNED" // Send daily until signed

399 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Deliverable Access¶

Business Workspace Integration¶

The Adobe Sign integration can be seamlessly integrated with Content Server's Business

Workspace feature, allowing for structured document signing workflows with category-based

metadata management.

Integration Workflow¶

The following diagram illustrates the complete Business Workspace integration workflow:

flowchart TD

 A[Create Business Workspace] --> B[Configure Agreement Category]

 B --> C[Add Documents with Document Category]

 C --> D[Execute Agreement Creation Script]

 D --> E{Agreement Already Exists?}

 E -->|Yes| F[Display Current Status]

 E -->|No| G[Extract Agreement Details]

 G --> H[Upload Documents to Adobe Sign]

 H --> I[Create Participant Sets]

)

out << "Scheduled reminder created: ${reminderId}"

} catch (Exception e) {
log.error("Error creating scheduled reminder: ${e.message}", e)

}

try {
def agreementId = "your-agreement-id"

// Create participant access info
def participantAccessInfos = [

adobesign.newParticipantAccessInfoBuilder()
.withParticipantId("participant-id")
.withEmail("user@example.com")
.build()

]

// Generate access URLs
def accessResponse = adobesign.createDeliverableAccessURL(

agreementId,
participantAccessInfos

)

out << "Access URLs generated: ${accessResponse}"

} catch (Exception e) {
log.error("Error creating deliverable access: ${e.message}", e)

}

400 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

 I --> J[Send Agreement for Signature]

 J --> K[Update Business Workspace Status]

 K --> L[Monitor Agreement Status]

 L --> M{Status Changed?}

 M -->|No| N[Continue Monitoring]

 M -->|Yes| O[Update Local Status]

 O --> P{Status = SIGNED?}

 P -->|No| N

 P -->|Yes| Q[Download Signed Documents]

 Q --> R[Add as New Versions]

 R --> S[Complete Workflow]

 style A fill:#e1f5fe

 style S fill:#c8e6c9

 style F fill:#fff3e0

 style Q fill:#f3e5f5

Category Structure¶

Create the following category structure for managing agreements:

Agreement Category¶

Agreement Name (Text, 254 chars): Name shown to participants

Message (Text, 254 chars): Message sent to participants

Participants (Set):

Role (Text, 254 chars): SIGNER, APPROVER, etc.

Order (Integer): Workflow order

User (User Field): Content Server user

Full Name (Text, 254 chars): Participant name

Email (Text, 254 chars): Participant email

Signature State (Set):

Agreement ID (Text, 254 chars): Adobe Sign agreement ID

Status (Text, 254 chars): Current status

Document Category¶

Transient Document ID (Text, MultiLine): Adobe Sign document ID

AM Unique ID (Text, 254 chars): Unique identifier for linking

System Architecture¶

The following diagram shows the system architecture and data flow for Business Workspace

integration:

•

•

•

•

•

•

•

•

•

•

•

•

•

401 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

graph TB

 subgraph "Content Server"

 BW[Business Workspace]

 AC[Agreement Category]

 DC[Document Category]

 CS[Content Server Documents]

 AS[Adobe Sign Service]

 end

 subgraph "Adobe Sign Cloud"

 ASAPI[Adobe Sign API]

 AD[Agreement Data]

 TD[Transient Documents]

 SD[Signed Documents]

 end

 subgraph "Monitoring"

 POLL[Polling Script]

 WH[Webhook Handler]

 end

 BW --> AC

 BW --> DC

 BW --> CS

 AS --> ASAPI

 ASAPI --> AD

 ASAPI --> TD

 ASAPI --> SD

 POLL --> AS

 WH --> AS

 ASAPI -.->|Status Updates| POLL

 ASAPI -.->|Webhook Events| WH

 style BW fill:#e3f2fd

 style AS fill:#f3e5f5

 style ASAPI fill:#fff3e0

 style POLL fill:#e8f5e8

 style WH fill:#e8f5e8

Business Workspace Setup¶

Create a category folder Adobe Sign containing the Agreement and Document categories1.

402 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Create a Business Workspace structure that uses these categories

When creating a Business Workspace, configure the Agreement category data

Assign the Document category to all documents within the Business Workspace

Complete Business Workspace Script¶

The following script demonstrates a complete Business Workspace integration that handles

agreement creation, status monitoring, and document synchronization:

2.

3.

4.

/*
 * Complete Business Workspace integration script
 * Handles agreement creation, status monitoring, and document synchronization
 */

def bwID = params.bwID

try {
if (!bwID) {

throw new ExecutionFaultException("Business Workspace ID is required")
}

// Get Business Workspace
CSNode bw = docman.getNode(bwID)
if (!bw) {

throw new ExecutionFaultException("Business Workspace not found: ${bwID}")
}

def bwNameId = "Business Workspace ${bw.name} (${bw.ID})"

// Check if already processed
def agreementCat = bw."Agreement".asType(Map)
def agreementID = agreementCat["Signature State"]["Agreement ID"].flatten()[0]
def agreementStatus = agreementCat["Signature State"]["Status"].flatten()[0]

if (agreementID) {
out << "${bwNameId} already sent for signature.
ID: ${agreementID}, Status: ${agreementStatus}"
return

}

// Extract agreement details
def agreementName = agreementCat["Agreement Name"][0] ?: bw.name
def message = agreementCat["Message"][0] ?: "Please review and sign the attached documents"
def participants = agreementCat["Participants"]

if (!participants.size()) {
throw new ExecutionFaultException("${bwNameId} has no participants configured")

}

// Get documents from Business Workspace
def bwDocuments = bw.getChildrenFast()
if (!bwDocuments) {

throw new ExecutionFaultException("${bwNameId} has no documents to sign")
}

// Upload documents and create file info objects
def documentsNodes = bwDocuments.collect { it.getOriginalNode() }
def transientDocumentsIds = adobesign.uploadDocuments(documentsNodes)
def transientDocuments = []

transientDocumentsIds.eachWithIndex { docId, index ->
def amUniqueId = UUID.randomUUID().toString()

// Update document category

403 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

bwDocuments[index]."Document"."Transient Document ID" = docId
bwDocuments[index]."Document"."AM Unique ID" = amUniqueId
bwDocuments[index].update()

// Create file info for agreement
transientDocuments.add(

adobesign.newFileInfoBuilder()
.withTransientDocumentId(docId)
.withLabel(amUniqueId)
.build()

)
}

// Build participant sets from category data
def participantSets = []
def rolesKeys = participants*."Role".unique()

rolesKeys.each { roleKey ->
def orders = agreementCat["Participants"]

.findAll { it."Role" == roleKey }

.sort { it."Order" }
*."Order".unique()

orders.each { order ->
def orderedParticipants = agreementCat["Participants"]

.findAll { it."Role"[0] == roleKey[0] && it."Order"[0] == order[0] }

def memberInfos = orderedParticipants.collect {
if (it."User"[0]) {

users.getMemberById(it."User"[0])
} else {

[name: it."Full Name"[0], email: it."Email"[0]]
}

}

participantSets.add(
adobesign.newParticipantSetInfoBuilder()

.withRole(roleKey[0].toUpperCase())

.withOrder(order[0] as Integer)

.withParticipantsFromList(memberInfos)

.build()
)

}
}

// Create and send agreement
agreementID = adobesign.createAndSendAgreementWithTransientDocs(

transientDocuments,
agreementName,
participantSets,
message

)

if (agreementID) {
// Update Business Workspace with agreement info
bw."Agreement"."Signature State"."Agreement ID" = agreementID
bw."Agreement"."Signature State"."Status" = "IN_PROCESS"
bw.update()

out << "Agreement created successfully for ${bwNameId}
Agreement ID: ${agreementID}"
log.info("Agreement created for Business Workspace ${bwNameId}: ${agreementID}")

}

} catch (Exception e) {
log.error("Error processing Business Workspace ${bwID}: ${e.message}", e)
out << "Error: ${e.message}"

}

404 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

The Agreement is now created and the documents are being sent to signature. The next step is

to check the status of the Agreement and, when SIGNED, to download the signed version of

each document.

Status Monitoring and Synchronization¶

An important action to be performed when a signing workflow is concluded is to retrieve the

signed documents and synchronize them back on your Content Server system. Module Suite

Extension for Adobe Sign doesn't provide an automation, it's up to you to handle these

operations in your Content Server system.

Monitoring Approaches¶

The following diagram compares the two monitoring approaches:

graph LR

 subgraph "Polling Approach"

 P1[Scheduled Script] --> P2[Check All Agreements]

 P2 --> P3[Query Adobe Sign API]

 P3 --> P4[Update Local Status]

 P4 --> P5[Download if Signed]

 P5 --> P6[Wait for Next Schedule]

 P6 --> P1

 end

 subgraph "Webhook Approach"

 W1[Agreement Status Change] --> W2[Adobe Sign Webhook]

 W2 --> W3[Content Server Callback]

 W3 --> W4[Process Event]

 W4 --> W5[Update Local Status]

 W5 --> W6[Download if Signed]

 end

 style P1 fill:#e3f2fd

 style W1 fill:#f3e5f5

 style P5 fill:#c8e6c9

 style W6 fill:#c8e6c9

To retrieve the signed documents there are two different approaches:

Poll Adobe Sign for the agreement status and update the local instance when a change

is detected

Subscribe to Adobe Sign push notifications for the Agreement status changes (webhook

pattern)

•

•

405 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Polling-Based Monitoring¶

One way to retrieve the status updates for the Agreement is to poll Adobe Sign to detect

changes. It can be implemented by using the getAgreementStatus(...) API on the adobesign

service.

The following code example can be scheduled to periodically check and update all the Adobe

Sign agreements in your system (in our scenario, the Business Workspaces root directory).

Correct API Usage

Adobe Sign monitors that the usage of the API is compliant with certain guidelines. Specifically, certain APIs cannot

be invoked with a frequency that goes over a certain threshold. When scheduling polling scripts, make sure that

the scheduling frequency complies with the Adobe Sign guidelines.

/*
 * Scheduled script for monitoring agreement status
 * Run this script periodically to check for status changes
 */

import org.apache.commons.io.FilenameUtils

// The path to the Adobe Sign Workspace, modify it to match your setup
def adobeSignWorkspacePath = "Workspaces:Adobe Sign Workspace"

// Retrieves the information about the category in order to be able to retrieve a specific document via the "AM Unique ID" category attribute
def adobeSignDocumentCategory = docman.getCategory("Adobe Sign:Document")
def adobeSignDocumentCategoryDefinitionID = adobeSignDocumentCategory.definitionID
def adobeSignAMUniqueIdAttributeID = adobeSignDocumentCategory.getAttributeID('AM Unique ID')

// The method which peforms query to retrieve the specific document via the "AM Unique ID" category attribute that corresponds to the label of the transient document
def getDocumentByLabel = { amUniqueId ->

try{
// Define SQL code
def sqlCode = """

SELECT
 D.DataID "DATAID"
FROM DTree D INNER JOIN LLAttrData LLA
 ON D.DataID = LLA.ID AND D.VersionNum = LLA.VerNum
WHERE
 LLA.AttrID = ${adobeSignAMUniqueIdAttributeID}
 AND LLA.DefID = ${adobeSignDocumentCategoryDefinitionID}
 AND LLA.ValStr = '${amUniqueId}'
"""

// Set cursor and transaction enabled flags
Boolean cursorEnabled = true
Boolean transactionEnabled = true
// Set record limit
Integer recordLimit = 1

// Run the SQL query
def result = docman.runSQL(sqlCode, cursorEnabled, transactionEnabled, recordLimit).rows

return result[0].DATAID
} catch(e) {

log.error("Unable to retrieve the Document with the AM Unique ID ${amUniqueId}", e)
}

}

try {
def workspacesNode = docman.getNodeByPath(adobeSignWorkspacePath)

406 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

def businessWorkspaces = docman.getChildrenFast(workspacesNode).findAll { it.subtype == 848 }

businessWorkspaces.each { bw ->
def agreementID = bw."Agreement"."Signature State"."Agreement ID"[0]

if (agreementID) {
try {

def agreementStatus = adobesign.getAgreementStatus(agreementID)
def currentStatus = bw."Agreement"."Signature State"."Status"[0]

if (agreementStatus.status != currentStatus) {
// Status changed - update local system
bw."Agreement"."Signature State"."Status" = agreementStatus.status
bw.update()

log.info("Agreement ${agreementID} status updated: ${currentStatus} -> ${agreementStatus.status}")

// Handle completed agreements
if (agreementStatus.status == "SIGNED") {

processSignedAgreement(agreementID, bw)
}

}

} catch (Exception e) {
log.error("Error checking status for agreement ${agreementID}: ${e.message}", e)

}
}

}

} catch (Exception e) {
log.error("Error in agreement monitoring: ${e.message}", e)

}

def processSignedAgreement(agreementID, businessWorkspace) {
try {

// Get agreement documents
def documents = adobesign.getAgreementDocuments(agreementID)

if (documents?.documents) {
documents.documents.each { doc ->

// Find corresponding Content Server document
def bwDocument = getDocumentByLabel(doc.label)

if (bwDocument) {
// Download signed document
def responseBody = adobesign.downloadDocument(agreementID, doc.id)

if (responseBody) {
// Save signed version
CSResource signedPdf = docman.getTempResource(

FilenameUtils.getBaseName(bwDocument.name),
".pdf"

)

signedPdf.content.withOutputStream { os ->
os << responseBody.byteStream()

}

// Add as new version
if (bwDocument.getOriginalNode()) {

bwDocument.getOriginalNode().addVersion(signedPdf.content)
} else {

bwDocument.addVersion(signedPdf.content)
}

log.info("Added signed version for document: ${bwDocument.name}")
}

}
}

407 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Webhook-Based Monitoring¶

Another way to retrieve the Agreement status and the signed Documents is to subscribe to the

Adobe Sign push notification. This solution doesn't suffer from the limitations of the polling

approach such as the number of requests to Adobe Sign because it will be Adobe Sign itself

that pushes the notification when necessary.

To have a better understanding of this pattern, take a look to the Adobe Sign Webhook overview

(https://helpx.adobe.com/sign/developer/webhook/overview.html).

To prevent any malicious attack, explicitly allow the Adobe Sign IP ranges for webhooks in your

Application Server/Firewall. Take a look to the System Requirements for Adobe Sign (https://

helpx.adobe.com/sign/system-requirements.html).

In order to handle payloads from the Adobe Sign webhooks, the Script Console Extension for

Adobe Sign must be installed.

How to create an Adobe Sign webhook¶

There are two ways to handle a webhook in Adobe Sign: - through the Adobe Sign

Administration Panel - using the Module Suite Extension for Adobe Sign APIs

Creating a webhook using the Module Suite Extension for Adobe Sign¶

}

} catch (Exception e) {
log.error("Error processing signed agreement ${agreementID}: ${e.message}", e)

}
}

try {
def webhookId = adobesign.createAgreementWebhook(

"WEBHOOK_FROM_SCRIPT",
"https://your_address:8443/csconsole/ext/adobesign/adobeSign.cs",
["AGREEMENT_CREATED", "AGREEMENT_ACTION_COMPLETED", "AGREEMENT_WORKFLOW_COMPLETED"],
true, // Include detailed info
true, // Include participants info
true, // Include documents info
true // Include signed documents

)

out << "Webhook created successfully: ${webhookId}"

} catch (Exception e) {
log.error("Error while creating the webhook on Adobe Sign: ${e.message}", e)

}

408 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

https://helpx.adobe.com/sign/developer/webhook/overview.html
https://helpx.adobe.com/sign/developer/webhook/overview.html
https://helpx.adobe.com/sign/developer/webhook/overview.html
https://helpx.adobe.com/sign/developer/webhook/overview.html
https://helpx.adobe.com/sign/system-requirements.html
https://helpx.adobe.com/sign/system-requirements.html
https://helpx.adobe.com/sign/system-requirements.html
https://helpx.adobe.com/sign/system-requirements.html

Deleting a webhook using the Module Suite Extension for Adobe Sign¶

How to handle webhook payloads¶

After installing the extension for the Script Console it is necessary to create an asyncronous

callback script for the directory Adobe Sign Sync Inbox. This directory is the receptacle of the

payloads from the Adobe Sign webhook events (https://helpx.adobe.com/sign/fedramp/api/

webhook-event-payloads.html).

The following script is an example of callback that saves the signed document in the Business

Workspace structure.

try {
adobesign.deleteWebhook(webhookId)
out << "Webhook deleted successfully"

} catch (Exception e) {
log.error("Error while deleting the webhook on Adobe Sign: ${e.message}", e)

}

Warning

The Module Suite Script Console Extension for Adobe Sign only provides an automation to handle the webhook

payloads in your Content Server system under the directory Adobe Sign Sync Inbox, if configured. It's up to you to

define an asyncronous callback script to convert the payload in your system.

import org.apache.commons.io.FilenameUtils;

// Child node create is triggered when you add to a container
// a node that was not already on Content Server

log.debug("Executing Adobe Sign synchronization callback. Adobe Sign data doc: '{}', parent folder: '{}', callbackID: '{}', eventSourceID: '{}'", newNodeID, nodeID, callbackID, eventSourceID)

def adobeSignAgreementCategory
def adobeSignAgreementCategoryDefinitionID
def adobeSignAgreementIDAttributeID
def adobeSignDocumentCategory
def adobeSignDocumentCategoryDefinitionID
def adobeSignAMUniqueIdAttributeID

try {

// Retrieves the information about the category in order to be able to retrieve a specific workspace via the "Agreement ID" category attribute
adobeSignAgreementCategory = docman.getCategory("Adobe Sign:Agreement")
adobeSignAgreementCategoryDefinitionID = adobeSignAgreementCategory.definitionID
adobeSignAgreementIDAttributeID = adobeSignAgreementCategory.getAttributeID('Agreement ID')

// Retrieves the information about the category in order to be able to retrieve a specific document via the "AM Unique ID" category attribute
adobeSignDocumentCategory = docman.getCategory("Adobe Sign:Document")
adobeSignDocumentCategoryDefinitionID = adobeSignDocumentCategory.definitionID
adobeSignAMUniqueIdAttributeID = adobeSignDocumentCategory.getAttributeID('AM Unique ID')

} catch(Exception e) {

log.error("Error retrieving categories for Adobe Sign synchronization callback:" , e)

}

409 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

https://helpx.adobe.com/sign/fedramp/api/webhook-event-payloads.html
https://helpx.adobe.com/sign/fedramp/api/webhook-event-payloads.html
https://helpx.adobe.com/sign/fedramp/api/webhook-event-payloads.html
https://helpx.adobe.com/sign/fedramp/api/webhook-event-payloads.html

// The method which peforms query to retrieve the specific document via category attribute
def getNodeByCatAttrValue = { defID, attrID, valStr ->

try{
// Define SQL code
def sqlCode = """

SELECT
 D.DataID "DATAID"
FROM DTree D INNER JOIN LLAttrData LLA
 ON D.DataID = LLA.ID AND D.VersionNum = LLA.VerNum
WHERE
 LLA.DefID = ${defID}
 AND LLA.AttrID = ${attrID}
 AND LLA.ValStr = '${valStr}'
"""

// Set cursor and transaction enabled flags
Boolean cursorEnabled = true
Boolean transactionEnabled = true
// Set record limit
Integer recordLimit = 1

// Run the SQL query
def result = docman.runSQL(sqlCode, cursorEnabled, transactionEnabled, recordLimit).rows

return result[0]?.DATAID
} catch(e) {

log.error("Unable to retrieve the Document with the AM Unique ID ${valStr}", e)
}

}

try{
def newDocument = asCSNode(newNodeID)

if(newDocument.mimeType == "application/json"){

def jsonSlurper = new JsonSlurper()
def jsonResponse = jsonSlurper.parseText(newDocument.content.content.text)
def agreement = jsonResponse.agreement

if (agreement){

def agreementID = agreement.id
// Retrieves the Workspace linked to the agreement via the Agreement ID category attribute value and update its status
def bwID = getNodeByCatAttrValue(adobeSignAgreementCategoryDefinitionID, adobeSignAgreementIDAttributeID, agreementID)
if (bwID){

def bWorkspace = docman.getNodeFast(bwID)

if (bWorkspace){

bWorkspace."Agreement"."Status" = agreement.status
bWorkspace.update()

// If the workflow as been completed and the agreement is SIGNED, download and store the signed version of each document
if (agreement.status == "SIGNED"){

log.debug("#### Process Adobe Sign Webhook File - agreement signed: {}", agreementID)

agreement.documentsInfo.documents.each{

// Retrieves the Content Server document linked to the agreement document using the AM Unique ID attribute value
def bwDocumentID = getNodeByCatAttrValue(adobeSignDocumentCategoryDefinitionID, adobeSignAMUniqueIdAttributeID, it.label)

if (bwDocumentID) {
def bwDocument = docman.getNodeFast(bwDocumentID)

if (bwDocument){

// Download the signed document
def responseBody = adobesign.downloadDocument(agreementID, it.id)

410 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Troubleshooting¶

Common Issues¶

Authentication Errors¶

Problem: AuthenticationException when calling Adobe Sign methods

Solution: 1. Verify profile configuration 2. Check if user has completed OAuth flow 3. Ensure

tokens are not expired

if (responseBody){

CSResource pdfFile = docman.getTempResource(FilenameUtils.getBaseName(bwDocument.name), ".pdf")

pdfFile.content.withOutputStream { os ->
os << responseBody.byteStream()

}

// Add the signed version to the original node, if exists
if (bwDocument instanceof CSGeneration) {

bwDocument.getOriginalNode().addVersion(pdfFile.content)

} else {

bwDocument.addVersion(pdfFile.content)
}

log.error("Added signed version for the document ${bwDocument.name} for ${bWorkspace.name}")
}

}
}

}
}

}
}

}

}

} catch(Exception e) {

log.error("Error synchronizing Adobe Sign data. Data file ID: {}", newNodeID, e)

}

try {
adobesign.validateProfile("your-profile-id")

} catch (AuthenticationException e) {
// Redirect to authorization
def authURL = adobesign.getAuthorizationUrl("your-profile-id", redirectUrl)
redirect authURL

}

411 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Document Upload Failures¶

Problem: Documents fail to upload to Adobe Sign

Solution: 1. Check document format (PDF recommended) 2. Verify document size limits 3.

Ensure network connectivity

Agreement Creation Failures¶

Problem: Agreements fail to create or send

Solution: 1. Validate participant information 2. Check document requirements 3. Verify

agreement configuration

Debugging Tips¶

Enable Detailed Logging:

Validate Configuration:

Check Token Status:

Test API Connectivity:

try {
def documentId = adobesign.uploadDocument(document)

} catch (CSAdobeSignDocumentUploadException e) {
log.error("Document upload failed: ${e.message}")
// Handle specific upload errors

}

try {
def agreementId = adobesign.createAndSendAgreement(documents, name, participants, message)

} catch (ExecutionFaultException e) {
log.error("Agreement creation failed: ${e.message}")
// Check specific error details

}

1.

log.setLevel(Level.DEBUG)

2.

def isValid = adobesign.isClientIdValid("your-client-id")

3.

def token = adobesign.getAccessTokenFromStore("profile-id")
if (token) {

log.info("Token expires: ${token.expireDate}")
}

4.

412 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

Performance Considerations¶

Batch Operations: Use uploadDocuments() for multiple files

Async Processing: Use webhooks instead of polling when possible

Error Handling: Implement proper retry logic for transient failures

Security Best Practices¶

Access Control: Limit Adobe Sign profile access to authorized users

Network Security: Use HTTPS for all communications

Audit Trail: Log all Adobe Sign operations for compliance

Additional Resources¶

Adobe Sign REST API Documentation (https://secure.eu1.adobesign.com/public/docs/

restapi/v6)

Adobe Sign Developer Guide (https://opensource.adobe.com/acrobat-sign/

developer_guide/)

Module Suite Documentation (https://developer.answermodules.com/manuals/current/)

Content Script API Reference

This guide provides comprehensive coverage of the Module Suite Extension for Adobe Sign. For

additional support or advanced use cases, please refer to the official documentation or contact

your system administrator.

try {
def baseUris = adobesign.getBaseUris("profile-id")
log.info("Connected to Adobe Sign: ${baseUris}")

} catch (Exception e) {
log.error("Connection failed: ${e.message}")

}

1.

2.

3.

1.

2.

3.

•

•

•

•

413 Adobe Sign Integration Guide¶

Copyright © 2013-2025 AnswerModules Sagl

https://secure.eu1.adobesign.com/public/docs/restapi/v6
https://secure.eu1.adobesign.com/public/docs/restapi/v6
https://secure.eu1.adobesign.com/public/docs/restapi/v6
https://secure.eu1.adobesign.com/public/docs/restapi/v6
https://opensource.adobe.com/acrobat-sign/developer_guide/
https://opensource.adobe.com/acrobat-sign/developer_guide/
https://opensource.adobe.com/acrobat-sign/developer_guide/
https://opensource.adobe.com/acrobat-sign/developer_guide/
https://developer.answermodules.com/manuals/current/
https://developer.answermodules.com/manuals/current/
../../contentscript/otcsobj/

Beautiful WebForms

Getting Started with Beautiful WebForms¶

This guide provides a quick introduction to Module Suite Beautiful WebForms and helps you

get started with creating custom web forms and form-based applications on Content Server.

What is Beautiful WebForms?¶

Beautiful WebForms is a Module Suite component that enables you to create modern,

responsive web forms on OpenText Content Server. It provides a visual form builder, a

comprehensive widget library, and powerful integration capabilities that allow you to build

sophisticated form-based applications without traditional HTML/JavaScript development.

For a comprehensive overview, see the Beautiful WebForms Views.

Key Components¶

The Beautiful WebForms extension includes:

Form Builder - A web-based IDE with drag-and-drop capabilities for creating form views

Widget Library - A comprehensive set of form widgets and components

View Templates - Pre-configured templates for different form layouts and use cases

Custom Logic Execution Hooks (CLEH) - Server-side scripting hooks for form lifecycle

events

Smart View Integration - Embed forms directly in Smart View perspectives

Content Script Integration - Seamless integration with Content Script for server-side logic

AI-Based Form Builder - Experimental feature for creating forms using natural language

prompts

Quick Start Guide¶

1. Understanding the Basics¶

Start by reading the Beautiful WebForms Views to understand:

How Beautiful WebForms work

The form request lifecycle

•

•

•

•

•

•

•

•

•

414 Beautiful WebForms

Copyright © 2013-2025 AnswerModules Sagl

../views/
../views/

Custom Logic Execution Hooks (CLEH)

Grid system and responsive layout

2. Creating Form Objects¶

Learn how to create and manage Beautiful WebForms objects:

Beautiful WebForms Objects - Creating views and understanding view properties

3. Building Forms¶

Learn how to design and build forms using the Form Builder:

Form Builder - Learn how to use the web-based IDE to design forms

Smart Editor (WYSIWYG drag-and-drop)

Source Code Editor (Velocity template editing)

AI-Based Form Builder (experimental)

4. Working with Widgets¶

Explore the available widgets and their configurations:

Widgets - Overview of widgets and their usage

Widgets List - Complete reference of all available widgets

Widget Behaviours - Server-side behaviors for widgets

5. Advanced Features¶

Explore advanced capabilities and integrations:

Smart View Integration - Embedding Beautiful WebForms in Smart View perspectives

SDK - Creating custom widgets and templates

Language Reference - Content Script language syntax for form logic

Prerequisites¶

Before you begin, make sure you have:

Access to an OpenText Content Server instance with Module Suite (>= 3.3) installed and

properly configured

Familiarity with the basics of creating objects on Content Server

Understanding of the following Content Server objects:

Form Template

View (HTML, WR Power View)

Form

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

4.

5.

6.

415 Getting Started with Beautiful WebForms¶

Copyright © 2013-2025 AnswerModules Sagl

../otcsobj/
../editor/
../widgets/
../widgetslist/
../widgets_behaviours/
../smartui/
../sdk/
../lang/

Next Steps¶

Once you're familiar with the basics, you can:

Create your first form using the Form Builder

Explore the Widget Library to see what's available

Learn about Custom Logic Execution Hooks for server-side form processing

Integrate forms with Smart View for modern user interfaces

Content Management Object

Beautiful WebForms views are document-class objects on Content Server.

Being standard objects, Beautiful WebForms views comply with Content Server permissions

model. Upon creation, the object can be edited with the web-based IDE selecting the 'Form

Builder' function in the object function menu.

Creating a Beautiful WebForms View¶

Beautiful WebForms views can be created in the same way as standard html views. In the

'views' tab of the 'form template', an additional 'Beautiful Form' entry will be available in the

'add view' dropdown menu.

As per standard views, the creation requires a view name be specified. Standard versioning

options apply to form views.

•

•

•

•

416 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

../editor/
../widgetslist/
../smartui/

Upon creation, the view can be edited with the web-based IDE selecting the 'Form Builder'

option in the object options menu.

Understanding the view object¶

Beautiful WebForms views are much more than simple html-views. They are active objects that

can be used to create very complex applications. In order to implement all their additional

functionalities, Beautiful WebForms views are decorated with a set of information used by the

Beautiful WebForms framework for determining how to render, and how to display form's data

within them.

417 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

In the image above a simplified representation of the information that constitutes a Beautiful

WebForms view is highlighted:

(A) View's versions: Beautiful WebForms views are standard FormTemplate’s views thus

versioned document-class objects. Each version is, in the very end, nothing but a Velocity

(http://velocity.apache.org/) template document (HTML code + template expressions).

(B) For each version created with the FormBuilder's smart-editor the BWF framework

archives the smart-editor view's "model" into an internal database table. The smart-

editor view's model is constituted by the list of the configurations used for each widget

that build the view.

(C) View's properties: Beautiful WebForms views are associated with a set of predefined

properties persisted as the object's extended data. These properties are related just to

the last view's version.

The view's predefined properties are:

Form Builder mode used for creating the current view's version (either "source

code" or "smart editor")

The list of static "css" view's dependecies dynamically determined on the basis of

the widgets used to build the view

The list of static "javascript" view's dependecies dynamically determined on the

basis of the widgets used to build the view

The number of view's columns

The identifier of the library of widgets used to build the view

The ID of the view template (if any) associated to the view

The Form Builder is the privileged IDE for Beautiful WebForms. On the first load of an empty

view, the Form Builder will initialize it with a default input widget for every field in the form

template. The view will then be available for further editing.

Layout¶

The IDE is composed of a set of areas and controls, with different purposes.

The Main Working Area shows a preview of the current form view, with the available

input fields

The Widget Library (on the left) features a set of predefined widgets, which can be easily

dragged and dropped in the working area

•

•

•

1.

2.

3.

4.

5.

6.

•

•

418 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/

The Widget Configurator panel (on the right) is linked to the widget currently selected in

the main working area

AI-Based Form Builder¶

The AI-Based Form Builder is an experimental feature that enables designers to create forms

using natural language prompts. Instead of manually dragging and dropping widgets, you can

simply describe the form requirements, and C.A.R.L. (the AI assistant) will automatically

generate the form for you.

•

419 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

How It Works¶

The AI-Based Form Builder uses an agentic workflow architecture that processes your requests

through a sophisticated multi-agent system:

Coordinator Agent: When you submit a request, a coordinator agent first analyzes it and

creates an execution plan. This plan determines what needs to be done to satisfy your

requirements, including:

Identifying which form fields need to be created (if "Allow Creating New Fields" is

enabled)

Determining which widgets are most appropriate for each field

Organizing the form layout and structure

Widget Agents: Once the plan is determined, specialized widget agents work in parallel

to configure each widget according to the coordinator's plan. Each widget agent is

dedicated to a specific widget type and handles its configuration independently.

1.

2.

3.

4.

5.

User Confirmation Required

Every change made by the AI requires your explicit confirmation before being applied to the form. This ensures you

maintain full control over the form design and can review all AI-generated modifications before they are

implemented.

420 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

Key Features¶

Natural Language Form Creation: Simply describe what you want in the form, and the AI

will create it automatically

UI Guidelines Support: You can provide UI guidelines to guide the AI's design decisions,

ensuring the generated forms match your design standards

Agent Configuration: Fine-tune the AI's behavior through a dedicated configuration panel

that allows you to adjust various agent parameters

•

•

•

421 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

422 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

423 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

Allow Creating New Fields¶

The "Allow Creating New Fields" feature controls whether the AI can modify the form template

structure:

Enabled: The AI can automatically create any fields required for the form based on your

description. This gives maximum flexibility and allows the AI to build complete forms

from scratch.

Disabled: The AI will only work with existing form template fields and won't modify the

template structure. Use this mode when you want to preserve the existing field structure

and only modify widget configurations.

Single Widget Configuration¶

In addition to creating entire forms, you can also use the AI feature to configure individual

widgets. When you select a specific widget and interact with C.A.R.L., the AI will focus solely on

that widget's configuration without modifying the rest of the view. This allows you to:

Refine individual widget settings using natural language

Get AI assistance for specific widget properties

Make targeted improvements without affecting other form elements

•

•

•

•

•

424 Content Management Object

Copyright © 2013-2025 AnswerModules Sagl

Context Support¶

The AI-Based Form Builder supports adding files and images to the context, enabling the AI to:

Understand visual requirements from reference images

Process documentation or specifications provided as files

Generate forms that match design mockups or examples

This context-aware capability allows for more accurate form generation based on visual and

textual references.

Developer Guide: Editor Overview¶

Main Area Functionality¶

The Main Area of our software offers two distinct editing modes:

Smart Editor:

A WYSIWYG (What You See Is What You Get) drag-and-drop editor.

Enables form creation without writing any code.

Ideal for quick and intuitive design.

Source Code Editor:

A text-based editor for modifying Velocity code automatically generated by the

Smart Editor.

Offers detailed control over the form's code.

By default, the Smart Editor is active.

To switch to the Source Code Editor, use the Source button located in the Developer tab.

•

•

•

C.A.R.L. Required

The AI-Based Form Builder is an experimental feature that requires C.A.R.L. integration to be enabled and properly

configured on your system. Without C.A.R.L., this feature will not be available.

1.

◦

◦

◦

2.

◦

◦

425 Developer Guide: Editor Overview¶

Copyright © 2013-2025 AnswerModules Sagl

Editor Exclusivity¶

The Smart Editor and Source Code Editor are mutually exclusive; both cannot be active

simultaneously.

Any changes made in the Source Code Editor are not preserved if the form is later

modified in the Smart Editor.

Shortcuts¶

The following keyboard shortcuts are available while using the editor:

Shortcut Description

Ctrl + S Save the current view (add a new version)

Ctrl + Canc Delete the selected widget(s)

Ctrl + B Clone the selected widget(s)

Shift + Left Ar. Reduce the label’s dimension for the selected widget(s)

Shift + Right Ar. Increment the label’s dimension for the selected widget(s)

Ctrl + Left Ar. Reduce the dimension for the selected widget(s)

Ctrl + Right Ar. Increment the dimension for the selected widget(s)

Ctrl + Mouse sel. Select multiple widgets

Ctrl + Space In sourcecode editor - show the code autocompletion hints

Ctrl + H In sourcecode editor - Toggle the online Help window

F11 In widget’s configuration panel – Maximize editor (full-screen mode)

•

•

Check out your notifications

1
 The Source Code Editor provides a notification when switching back to the Smart Editor to remind you of potential loss of changes.

Do not use the Source Code editor to modify your view

1
2
3
4
5

We recommend avoiding modifications directly in the Source Code Editor. Instead, consider these options for customization:

- **Custom HTML Widget**: Allows for specific HTML element customization.
- **Creating a New Widget**: Design your own widget for unique functionality.
- **Modifying an Existing Widget**: Adjust existing widgets to suit your needs.

426 Developer Guide: Editor Overview¶

Copyright © 2013-2025 AnswerModules Sagl

Top Bar controls (DESIGNER)¶

Command Description

Versions

Save the view (adds a new version)

Open the object’s Versions tab

Close the FormBuilder

Libary

Selects the widgets’ library to use for creating the view

Configures the number of columns in the view layout. In order to take

effect, requires to save the view & reload the editor window

View template

The View’s template associated with the form can be selected with the

dropdown menu, or, as an alternative, selecting a suitable document from

Content Server.

View

Switch the whole view between Read Only and Editable mode (affects the

way input widgets are rendered)

Switch the whole view between Read Only and Editable mode (affects the

way input widgets are rendered)

Clear the entire working area

Widget

Reposition the widget, moving it one step up/down in the form

Pick Up the widget (to drop it elsewhere in view)

Duplicate the selected widget

427 Developer Guide: Editor Overview¶

Copyright © 2013-2025 AnswerModules Sagl

Command Description

Remove the widget from the form

Open the widget’s Configuration Panel

Toggle the visibility of widgets that are not rendered in the final view (e.g.

scripts)

Selection

Increase/decrease the size of the widget’s label (if available). This option

affects the number of columns spanned horizontally by the label.

Increase/decrease the size of the widget. This option affects the number of

columns spanned horizontally by the whole widget (including the label, if

present).

Change of the widget's position. This option affects the number of columns

spanned horizontally by the whole widget (including the label, if present).

Help

Access the module’s online guide and the support portal

Validation

Red label: The view failed the validation and most likely will fail to compile

Green label: The view is well-formed

Widget Scope

To enable the Widget Scope options in the menu, simply right click on the target widget in the working area.

Columns

When switching the number of columns, save & reload the page editor to force reload of all widgets in the working

area

428 Developer Guide: Editor Overview¶

Copyright © 2013-2025 AnswerModules Sagl

Top Bar controls (DEVELOPER)¶

Command Description

Versions

Save the view (adds a new version)

Open the object’s Versions tab

Close the FormBuilder

Source code

Opens the view's source code editor

Downloads the view's current model to be used for creating a new widget

Downloads the view's localization file

Reloads all the available localization files

Scripts

Opens the On-load CLEH Content Script Editor

Opens the Pre-submit CLEH Content Script Editor

Opens the On-submit CLEH Content Script Editor

Validation

Red label: The view failed the validation and most likely will fail to compile

429 Developer Guide: Editor Overview¶

Copyright © 2013-2025 AnswerModules Sagl

Command Description

Green label: The view is well-formed

Building views

Understanding the grid system¶

In order to understand some of the features presented in the next sections, it is necessary to

introduce the concept of Grid System, which has been adopted in the Beautiful WebForms

Form Builder and views.

When creating or modifying a Form view, all of the widgets in the view appear neatly aligned to

each other. The widgets can be modified in size only in discrete steps: that is, each widget can

be assigned a size from a set of predefined options. When the view is presented to the user,

the actual size of the widget will be proportional to the selected value.

To understand the logic behind this behaviour, you can imagine the Form fieldset area as if it

was divided in a fixed number of columns (12 by default). By forcing each widget to span over a

whole number of columns, we keep the overall layout of the form clean and tidy, eliminating

the effort that is usually required to fine-tune the alignments and spacings. To better

understand this concept, please take a look at the following image.

Editing source code

View's versions created editing directly the source-code editor can't be further modified with the FormBuilder's

smart-editor. If you switch from source-code editor to smart-editor any changes applied modifying the source code

will be lost.

430 Building views

Copyright © 2013-2025 AnswerModules Sagl

Additionally, the technology used for the grid layout is responsive. The form will automatically

adjust to the size of the screen in which it is viewed, degrading gracefully in case of screen of

small size.

Understanding the Beautiful WebForms request life-

cycle¶

Beautiful WebForms implement a slightly different lifecycle if compared to standard forms,

thanks to their custom submission mechanism.

How incoming requests are processed¶

Beautiful WebForms are managed through a dedicated endpoint. Upon submission, the

underlying engine performs server side validation. Only after successful validation, the form

data is eventually submitted to Content Server.

The Beautiful WebForms life-cycle management of incoming requests can be schematized in

the following steps:

Form rendering request: a user requests the form

ON LOAD - Custom logic execution hook

1.

2.

431 Building views

Copyright © 2013-2025 AnswerModules Sagl

Form view rendering: the form page is rendered

User data input: the user interacts with the form and populates the input fields

Form submit action: the user attempts to submit the form data

Client side validation: the client side library validates the input fields

Actual data submission to Beautiful WebForms endpoint: in case of successful validation,

data is submitted to the server

Server side validation: the Beautiful WebForms engine performs server side validation on

the submitted data

PRE SUBMIT - Custom logic execution hook

Actual data submission to Content Server: form data is submitted to Content Server

POST SUBMIT - Custom logic execution hook

A validation error in any of the validation steps would interrupt the flow and return to

step 1. Error information would be added to the form view, and used to populate inline

error messages.

In case of validation errors, the data input by the user is preserved for the following view

rendering.

Lifecycle schema¶

The following schema considers a scenario in which a new form is requested by a user:

The following schema is related to a scenario in which the user attempts to submit the form

(or otherwise performs an action that triggers a round trip to the server):

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

432 Building views

Copyright © 2013-2025 AnswerModules Sagl

Custom Logic Execution Hooks (CLEH)¶

In the two schemas above, there are several highlighted boxes that represent Custom Logic

execution hooks. That is, steps in which it is possible to add customized business logic, in the

form of Content Script code.

The scripts are:

ON LOAD view Content Script: this is the typical hook for prepopulating the form and

manipulating the form view

PRE SUBMIT view Content Script: this is the typical hook for extended validation and

actions that must be performed before that the data is actually saved

POST SUBMIT view Content Script: this is the typical hook for post submit actions (user

notifications, document manipulation on content server, etc.)

Throughout the whole process and in all of these scripts, a form object is available in the

execution context. This object allows to fetch and manipulate the form data, as well as

programmatically add or remove validation errors.

The Content Script objects associated to each execution hook can be accessed and edited

through the Specific Properties tab of the Beautiful WebForm view object.

•

•

•

Starting with version 1.7.0, Beautiful WebForms Views have been transformed in container objects. Content Scripts

associated to Beautiful WebForms views are standard Content Script nodes in the view container. The nodes are

associated to the lifecycle steps by name

433 Building views

Copyright © 2013-2025 AnswerModules Sagl

The Content Scripts associated with CLEHs are regular Content Script objects. In the Script

Context the Beautiful WebForms framework will inject additional items, such as the form

object, which represents the form that is currently associated to the view.

The form object grant access to the form fields structure and the current values of each field,

the form submitted data, the validation rules associated to the form, and provides utilities to

manipulate this information.

E.g.

A commonly used function in the "ON LOAD view script" is

form.isFirstLoad()

The function allows to define actions which are executed only once per form view (the actions

are not repeated in case of submission failure - for example, in case of validation errors).

Typically, field prepopulation happens here.

The following sections provide information on common tasks that can be performed on the

form programmatically in the various Content Scripts.

Managing form fields values¶

The state of the forms can be programmatically accessed and modified through the Content

Script Custom Logic Execution Hooks.

In scripts, form field values can be accessed using the following notation:

form.*normalizedname*.value

where 'normalizedname' is the name of the field after normalization performed by the

Beautiful WebForms framework.

Auto completion

Use the CTRL+Space keyboard shortcut to access autocomplete options on the form object. Options include all the

fields in the form.

434 Building views

Copyright © 2013-2025 AnswerModules Sagl

The rules applied when normalizing field names are:

the only admitted characters are alphanumeric characters and whitespaces (using

different characters can lead to unexpected behavior)

all characters are transformed in lowercase

all characters immediately after a whitespace are transformed in uppercase

As a rule of thumb, it is advised to adopt a naming convention for field names that would be

compatible with SQL table column names.

To better understand the concept, consider the following Form Template, containing a few

fields (using different possible naming conventions):

a field named 'lowercase'

a field named 'UPPERCASE'

a field named 'Capitalized'

a field named 'camelCase'

a field named 'words with spaces'

The fields can be accessed in a script as follows:

'lowercase': form.lowercase.value

'UPPERCASE': form.uppercase.value

'Capitalized': form.capitalized.value

'camelCase': form.camelcase.value

'words with spaces': form.wordsWithSpaces.value

•

•

•

•

•

•

•

•

•

•

•

•

•

form.lowercase.value = "TEST VALUE A" //Form template field name: lowercase
form.uppercase.value = "TEST VALUE B" //Form template field name: UPPERCASE
form.capitalized.value = "TEST VALUE C" //Form template field name: Capitalized
form.camelcase.value = "TEST VALUE D" //Form template field name: camelCase
form.wordsWithSpaces.value = "TEST VALUE E" ////Form template field name: words with spaces

435 Building views

Copyright © 2013-2025 AnswerModules Sagl

// Initalize form field values: some examples

form.lowercase.value = “TEST VALUE A” // Form template field name: lowercase

form.uppercase.value = “TEST VALUE B” // Form template field name: UPPERCASE

form.capitalized.value = “TEST VALUE C” // Form template field name: Capitalized

form.camelcase.value = “TEST VALUE D” // Form template field name: camelCase

form.wordsWithSpaces.value = “TEST VALUE E” // Form template field name: words with spaces

The resulting form (after initialization):

Adding and removing values from multivalue fields¶

In case of multi-value fields, it is possible to programmatically add new values (up to the max-

values limit)

For each field, multiple values can be accessed directly by index (0-based).

By default, if a field value is accessed without specifying an index, the referenced value is the

one with index 0.

form.textvalue.value = "My value" is equivalent to form.textvalue[0].value = "My value"

NOTE: The value at index 0 does not require initialization.

To access values at index > 0:

form.textvalue.addField(1)

form.textvalue[1].value = "My value"

Example. Field initialization:

form.textField.value = "Value A" // The first field (index:0) is always available. no need to add this.

436 Building views

Copyright © 2013-2025 AnswerModules Sagl

The resulting form (after initialization):

Form actions¶

An action is a piece of server side scripting code that is execute in response of a particular

type of request. The action to be performed is identified by the request parameter (am_Action)

submitted with the form. Another optional parameter (am_ActionParams) is sometimes included

when specific information is required by the action.

Standard form actions¶

The framework is capable of handling a set of predetermined actions as part of the Beautiful

WebForms lifecycle.

The following are the standard actions managed by the framework:

Action Description
Action ID

(am_Action)
Action parameter (am_ActionParams) usage

Reload

Performs a round trip

to the server and re-

renders the form view.

am_reload not required

Save

Saves the current

state of the form,

without

submitting. Available

in Workflow forms only

am_save not required

Exit am_exit not required

form.addField("textField", 1) // Additional field's values can be added either through the form object
form.textField.addField(2) // or directly on the field

form.textField[1].value = "Value B"
form.textField[2].value = "Value C"

form.textField.addField(3)
form.textField[3].value = "Value D"

437 Building views

Copyright © 2013-2025 AnswerModules Sagl

Action Description
Action ID

(am_Action)
Action parameter (am_ActionParams) usage

Exits without saving

modifications to the

form data

Switch

View

Switches the view and

re-renders the form
am_switchView The ID of the target view

Next

To be used together

with "prev" to create a

wizard-like experience,

enabling the switching

forwards through a

sequence of different

views

am_wizardNext

The ID of the next view. Alternatively, the

target view can be configured on server side

by setting the value

of: form.viewParams.am_wizardNextView

Prev

To be used together

with "next" to create a

wizard-like experience,

enabling the switching

backwards through a

sequence of different

views

am_wizardBack

The ID of the previous view. If not and a

"Next" action was invoked beforehand, the

framework will attempt to switch back to

that view. Alternatively, the target view can

be configured on server side by setting the

value of: form.viewParams.am_wizardPrevView

Standard form actions can be selected by using the Standard Action Button component.

The Standard Action Button component can be configured through the configuration panel to

select the appropriate action

438 Building views

Copyright © 2013-2025 AnswerModules Sagl

Whenever a parameter is required by the selected action (see above table) the appropriate

value can be configured as follows:

Custom form actions¶

It is also possible to define custom actions when submitting a form. In this case, the custom

actions should be handled in the Content Script Custom Logic Execution Hooks.

Custom form actions can be selected by using the Custom Action Button component.

439 Building views

Copyright © 2013-2025 AnswerModules Sagl

In this case, the configuration panel allows to specify a value for the name of the action and

the value of the (optional) actionParams

Whenever the button is used, the information related to action and actionParams will be

available in the request params. It can be easily accessed as follows:

Below is a simple example showing how to use and manage a Custom Action:

def action = params.get("am_action")
def actionParams = params.get("am_actionParams")

440 Building views

Copyright © 2013-2025 AnswerModules Sagl

Attaching Custom information and data to a Beautiful WebForms
view¶

ViewParams¶

It is sometimes necessary to bind to the form object additional parameters and values that are

not supposed to be stored in form fields. It is the case for parameters that are only needed to

control the form page layout: an example is when the HTML template containing the form can

be dynamically configured in some of its parts (for example, a title or logo).

To address this need, the 'form' object is bound to a data map (named 'viewParams') which is

meant to contain additional parameters that are not supposed to be persisted with the form

data.

Entries in the 'viewParams' map can be set and accessed programmatically as in the following

examples.

Example 1. Within a Content Script, set the value of the parameter 'title':

Invoking an action

It is possible to manually trigger the execution of Actions in cases where the provided Form Components are not

sufficient to meet specific needs.

In such cases, the am_setAction(form, action, actionParams) javascript function can be used, where:

form is the id of the html form (eg. form_258191)

action is the action id (eg. am_customAction)

actionParams is the optional value of additional parameters required by the action (eg. '12345')

The following is an example using an HTML button:

•

•

•

<button
onclick="am_setAction('form_258191','am_customAction','12345')"
type="submit"> Custom Action Button </button>

441 Building views

Copyright © 2013-2025 AnswerModules Sagl

Example 2. Within a Content Script, read the value of the parameter 'title' and store the value

in a variable 'myVar':

Example 3. When accessing the 'viewParams' in an HTML Form Template, the syntax is slightly

different, as the templating engine syntax must be used. For example:

You can include a '!' in your expression in order to avoid printing the output in the rendered

HTML in case the value of the variable is not set:

ViewParams variables¶

Prior of each view rendering, the Beautiful Form Frameworks injects in the viewParams field of

the Form object a set of variables. The number and type of these variables depend on the

current execution scope. All the variables at the moment of the injection are serialized as

String. The table here below summarizes all the possible variables that can be found in the

viewParams field, indicating for each of them, the original type and name.

form.viewParams.title = "My Form"

def myVar = form.viewParams.title

<h1>$form.viewParams.title</h1>

<h1>$!form.viewParams.title</h1>

Serializable

any object programmatically added to the 'viewParams' map MUST be a serializable object.

Warning

the actual case of the variable names could depend on the underlying database.

List of the variable automatically injected into the ViewParams map 

Variable Name	Scope	Original Type
LL_CgiPath	Form, Workflow	String
LL_NextURL	Form, Workflow	String
LL_SupportPath	Form, Workflow	String
LL_UserContact	Form, Workflow	String
LL_UserFirstName	Form, Workflow	String
LL_UserFullName	Form, Workflow	String
LL_UserGroupName	Form, Workflow	String
LL_UserID	Form, Workflow	Integer

442 Building views

Copyright © 2013-2025 AnswerModules Sagl

Form Components that make use of 'viewParams' values.¶

Various components available in the Form Builder are configurable and require one or more

parameters to be programmatically set: these parameters can be made available to the

component as values in the 'viewParams' container variable.

LL_UserLastName	Form, Workflow	String
LL_UserLogin	Form, Workflow	String
LL_UserMailAddress	Form, Workflow	String
LL_UserMiddleName	Form, Workflow	String
LL_UserTitle	Form, Workflow	String
MapTask_CustomData	Workflow	Assoc
MapTask_Description	Workflow	String
MapTask_Form	Workflow	Assoc
MapTask_Instructions	Workflow	String
MapTask_Priority	Workflow	Integer
MapTask_StartDate	Workflow	Date
MapTask_SubMapID	Workflow	Integer
MapTask_SubType	Workflow	Integer
MapTask_Type	Workflow	Integer
Map_Description	Workflow	String
Map_Instructions	Workflow	String
Map_SubType	Workflow	Integer
Map_Type	Workflow	Integer
SubWorkTask_DateDone	Workflow	Date
SubWorkTask_DateDue_Max	Workflow	Date
SubWorkTask_DateDue_Min	Workflow	Date
SubWorkTask_DateMilestone	Workflow	Date
SubWorkTask_DateReady	Workflow	Date
SubWorkTask_Flags	Workflow	Integer
SubWorkTask_IterNum	Workflow	Integer
SubWorkTask_PerformerID	Workflow	Integer
SubWorkTask_Status	Workflow	Integer
SubWorkTask_SubWorkID	Workflow	Integer
SubWorkTask_TaskID	Workflow	Integer
SubWorkTask_Title	Workflow	String
SubWorkTask_Type	Workflow	Integer
SubWorkTask_WaitCount	Workflow	Integer
SubWorkTask_WorkID	Workflow	Integer
SubWork_DateCompleted	Workflow	Date
SubWork_DateDue_Max	Workflow	Date
SubWork_DateDue_Min	Workflow	Date
SubWork_DateInitiated	Workflow	Date
SubWork_Flags	Workflow	Integer
SubWork_MapID	Workflow	Integer
SubWork_Project	Workflow	Dynamic
SubWork_ReturnSubWorkID	Workflow	Integer
SubWork_ReturnTaskID	Workflow	Integer
SubWork_Status	Workflow	Integer
SubWork_SubWorkID	Workflow	Integer
SubWork_Title	Workflow	String
SubWork_WorkID	Workflow	Integer
Work_DateCompleted	Workflow	Date
Work_DateDue_Max	Workflow	Date
Work_DateDue_Min	Workflow	Date
Work_DateInitiated	Workflow	Date
Work_Flags	Workflow	Integer
Work_ManagerID	Workflow	Integer
Work_OwnerID	Workflow	Integer
Work_Status	Workflow	Integer
Work_WorkID	Workflow	Integer

443 Building views

Copyright © 2013-2025 AnswerModules Sagl

The widgets library¶

The Widgets library is an extensible set of form widgets that can be used through the drag &

drop visual editor. To simplify the navigation, the widgets are arranged in families of objects

with similar functionalities.

To add a new widget:

Open the widget library group that contains the widget

Click on the widget, holding the mouse button down

Drag the widget to the desired position in the working area (a highlighted box will

appear)

Drop the widget in the working area

The widget configuration panel¶

When a widget in the Main Working Area is selected, the Configuration Panel can be activated

through the dedicated menu option or by right-clicking the widget. The content of the panel is

specific to the type of widget, and allows to define the widget binding to underlying form fields

The mapping between form template fields and their default input widget used to initialize Beautiful WebForms

Views can be customized by configuring the desired CSFormSnippet in the Content Script Volume.

1.

2.

3.

4.

444 Building views

Copyright © 2013-2025 AnswerModules Sagl

(in case of input widgets), as well as how the widget will be rendered, what validation rules will

be applied to it, and any other setting that could be necessary for the specific widget.

Beautiful WebForms View Templates¶

445 Building views

Copyright © 2013-2025 AnswerModules Sagl

The BWF Framework enforces the Model View Controller paradigm, in fact Beautiful WebForms

Views (and Templates) are always processed, before being rendered, from the module’s internal

Templating engine. At rendering time the BWF framework creates (as Model) for the Form View

an Execution Context very similar to the one used by the Content Script Engine. The main

difference between the two contexts is the presence of the "form" variable that refers to a

server side representation of the Form object to which the Form View has been associated. As

discussed each BWF View can be associated to a Form Template. At rendering time the

framework executes the following operations:

Substitutes in the Form Template any occurrences of the tag <am:form /> with the

content of the Form View as defined, for example, using the Form Builder

Evaluates the result of the previous operation with the internal Templating Engine

The most important consequence of the aforementioned rendering procedure is that any valid

Templating expression present both in the View and in the Template will be evaluated and

eventually substituted by the Templating engine. This feature is widely used by default Form

Templates and default Form Snippets.

Default Form Templates make use of these characteristics of the framework to slightly change

their aspect, resulting behaviors, or more simply to load the most appropriate static resources

(i.e. javascript libraries and CSS stylesheets).

For developers convenience the BWF frameworks defines also a set of macro that simplify the

creation of new templates or the management of existing one. In the following section the

source code of these macro is listed.

Customize the way validation error messages are

rendered¶

In order to customize the way validation error messages related to form's fields are displayed

you can leverage the Errors (/working/bwebforms/widgets/#errors_1) widget in order to

override both the javascript (used to render errors on client side) and Velocity (used to render

errors on server side) functions in your view.

•

•

(function(root, factory){
if (typeof csui !== 'undefined' && typeof csui.require === 'function') {

csui.require(['jquery','underscore','v3/js/am/am_init','v3/js/am/am_ajaxvalidation'], function($, _, amui, amform){
factory($, _, amui, amform);

});
}else if (typeof require === 'function'){

require(['jquery','underscore','v3/js/am/am_init','v3/js/am/am_ajaxvalidation'], function($,_, amui, amform){
factory($, _, amui, amform);

});
} else {

factory(root.jQuery, root.amui);
}
}(this, function($, _, amui, amform) {

446 Building views

Copyright © 2013-2025 AnswerModules Sagl

/working/bwebforms/widgets/#errors_1
/working/bwebforms/widgets/#errors_1

amform.zcleanFieldValidationError = function (comp){
var wrapper =comp.closest('.am-form-input-wrap')
wrapper.removeClass('am-has-error-tooltip')
wrapper.removeClass('has-error')
wrapper.data('title', '').attr('title', '');
try {

wrapper.tooltip('destroy')
} catch (e) {
}

}

amform.zcleanFormValidationError = function (form){
form.find('.help-block.has-error').remove();
form.find('.am-form-input-wrap').removeClass('has-error');
form.find('.am-has-error-tooltip').each(
function() {

$(this).removeClass('am-has-error-tooltip').data('title', '')
.attr('title', '')

try {
$(this).tooltip('destroy')

} catch (e) {
}

});
}

amform.zdisplayValidationError= function (message, failingElements){
$(failingElements).each(

function() {
var wrapper = $(this).closest('.am-form-input-wrap')
try {

wrapper.addClass('am-has-error-tooltip').addClass(
'has-error').attr(
'title',
((wrapper.data('title') != undefined) ? wrapper

.data('title') : '')
+ ' ' + message);

wrapper.tooltip('destroy')
wrapper.tooltip()

} catch (e) {
}

});
}

}));

#macro(showErrors $field)
<script>
(function(root, factory) {
 if (typeof csui !== 'undefined' && typeof csui.require === 'function') {
 csui.require(['jquery','v3/js/am/am_init','underscore','regula'], function($,amui,underscore,regula){
 factory($, amui, _, regula);
 });
 }else if (typeof require === 'function') {
 require(['jquery', 'v3/js/am/am_init', 'underscore', 'regula'], function ($, amui, _, regula) {
 return factory($, amui, _ ,regula);
 });
 } else {
 factory(root.jQuery, root.amui, root._, regula);
 }
}(this, function($, amui, _, regula) {

#if($field.getValidationStatus().size() gt 0)
 amui.registerInitWidgetCallback(function(){

$('#$field.id').data('title','');
#foreach ($error in $field.getValidationStatus())

$('#$field.id').data('title', $('#$field.id').data('title')+' $error.validationError');
#end

 var wrapper = $('#$field.id').closest('.am-form-input-wrap');
 try{

447 Building views

Copyright © 2013-2025 AnswerModules Sagl

Display errors in Smart View¶

In order to be compliant with the way SmartView displays error messages the following

overrides can be utilized

 wrapper.tooltip('destroy')
 }catch(e){
 }
 wrapper.addClass('am-has-error-tooltip')
 .data('title', $('#$field.id').data('title'))
 .attr('title', $('#$field.id').data('title'))
 .tooltip()
 .addClass('has-error');
 });

#end
}));
</script>
#end

(function(root, factory){
if (typeof csui !== 'undefined' && typeof csui.require === 'function') {

csui.require(['jquery','underscore','v3/js/am/am_init','v3/js/am/am_ajaxvalidation'], function($, _, amui, amform){
factory($, _, amui, amform);

});
}else if (typeof require === 'function'){

require(['jquery','underscore','v3/js/am/am_init','v3/js/am/am_ajaxvalidation'], function($,_, amui, amform){
factory($, _, amui, amform);

});
} else {

factory(root.jQuery, root.amui);
}
}(this, function($, _, amui, amform) {

amform.zdisplayValidationError= function(message, failingElements){
$(failingElements).each(

function() {
var wrapper = $(this);
try {

wrapper.addClass("am-smartui-error");
wrapper.closest('.am-form-input-wrap').append("<div class='amsmartui-help-block form-control-error'>"+message+"</div>")

} catch (e) {
//jquery compatibility

}
});

}

amform.zcleanFieldValidationError=function(comp){
var wrapper =comp
wrapper.removeClass('am-smartui-error')
wrapper.closest('.am-form-input-wrap').find(".amsmartui-help-block").remove();

}

amform.zcleanFormValidationError = function(form){
form.find('.help-block.has-error').remove();
form.find('.am-form-input-wrap').removeClass('has-error');
form.find('.am-smartui-error').each(

function() {
$(this).removeClass('am-smartui-error').closest('.am-form-input-wrap').find(".amsmartui-help-block").remove();

});
}

}));

448 Building views

Copyright © 2013-2025 AnswerModules Sagl

performances-tips

Widgets

Beautiful WebForms Widgets¶

Beautiful WebForms Widgets are the base units a View is composed of (a View is in fact nothing

but a collection of Widgets). Beautiful WebForms Widgets are implemented by Module Suite

Template objects of type Beautiful WebForm Snippet stored under the CSFormSnippets folder

in the Content Script Volume (/administration/csvolume/).

Widgets are defined by a Model and a Template.

View's Widgets templates and their models are evaluated by the Form Builder 1 to produce the

intermediate View Velocity Template Document (VVTD).

At runtime (when a WebForm is rendered) the Beautiful WebForm MVC framework evaluates the

VTD against a Content Script Model to produce the final WebForm HTML page.

#macro(showErrors $field)
<script>
(function(root, factory) {
 if (typeof csui !== 'undefined' && typeof csui.require === 'function') {
 csui.require(['jquery','v3/js/am/am_init','underscore','regula'], function($,amui,underscore,regula){
 factory($, amui, _, regula);
 });
 }else if (typeof require === 'function') {
 require(['jquery', 'v3/js/am/am_init', 'underscore', 'regula'], function ($, amui, _, regula) {
 return factory($, amui, _ ,regula);
 });
 } else {
 factory(root.jQuery, root.amui, root._, regula);
 }
}(this, function($, amui, _, regula) {

#if($field.getValidationStatus().size() gt 0)
 amui.registerInitWidgetCallback(function(){
 var wrapper = $('#$field.id');
 wrapper.addClass("am-smartui-error");

#foreach ($error in $field.getValidationStatus())
 wrapper.closest('.am-form-input-wrap').append("<div class='amsmartui-help-block form-control-error'>$error.validationError</div>")

#end

 });
#end

}));
</script>
#end

449 Widgets

Copyright © 2013-2025 AnswerModules Sagl

/administration/csvolume/
/administration/csvolume/

Model and Template¶

The Widget model is implemented in the form of a Javascript object while the template is

implemented in the form of an Handlebars (https://handlebarsjs.com/) template. The template

might contain a set of partials (https://handlebarsjs.com/guide/partials.html#partials) defined

by Module Suite Template objects of type Content Script Snippet stored under the CSSystem

folder in the Content Script Volume (/administration/csvolume/), partials can be identified

because their name is prefixed by the Partial keyword.

Below an example of a Widget Model and template:

ModelTemplate

{
"fields":{

...
"h_base" :{"title":"Basics","type":"_help","help":"oh_baseProperties"},
"fieldA":{"label":"A Field Label","type":"input","value":"","help":"Field's help message", "i18nDisabled":true},
...

}
,"title":"My Widget"
,"help":{"value":"oh_textInput"}
,"order":["fieldA", "fieldB"]
,"jsdependencies":[]
,"cssdependencies":[]
,"nonRendableWidgets":false
,"columns":true
,"binding":true
,"style":true
,"validation":true
,"readonly":true
,"container":false,
,"rendered": true

}

450 Widgets

Copyright © 2013-2025 AnswerModules Sagl

https://handlebarsjs.com/
https://handlebarsjs.com/
https://handlebarsjs.com/guide/partials.html#partials
https://handlebarsjs.com/guide/partials.html#partials
/administration/csvolume/
/administration/csvolume/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

451 Widgets

Copyright © 2013-2025 AnswerModules Sagl

69
70
71

{{> _renderedOpen}} {{!-- Manages the "Show-if" configuration option (creates the VTL expression)--}}
{{#*inline "_componentClass"}}am-form-text-input{{/inline}}

{{#if label}}^
 {{> _labelLeft}}

<div class="{{> _colSize}} {{>_componentClass}} {{add_class}}" {{>_amWID}}> {{!-- {{> _colSize}} is the partial used to manage columns size --}}
 {{> _labelTop}}

{{else}}
<div class="{{> _colSize}} {{>_componentClass}} {{#unless label}}{{#if required}}am-form-required{{/if}}{{/unless}} {{add_class}}" {{>_amWID}}>

{{/if}}

 {{#if render}}
 #foreach($rowField in {{id}})
 {{> _defaultValue }}
 {{/if}}

<div class="am-form-input-wrap" {{> _popover }} >

 {{#if render}}
 #if({{{readonly}}})

<p class="{{#if bold_body}}am-form-bold{{/if}}" >
 $esc.html({{id}}.value)

</p>

 #else

 {{/if}}
<input id="{{id}}.id"

name="{{id}}.id"
value="{{#if render}}$esc.html({{id}}.value){{else}}{{placeholder}}{{/if}}" type="text"
placeholder="{{placeholder}}"
class="form-control"
style="{{style}}"
data-constraints="{{id}}.validation('{{validation}}')"

{{#each dataatts}}
data-{{label}}="{{{value}}}"
{{/each}}
/>

 {{> _addDeleteButtons}}

 {{> _showErrors}}
 {{#if render}}
 #end
 {{/if}}

</div>

 {{#if render}}
 #end
 {{/if}}

 {{#if helptext}}
<p class="help-block">{{helptext}}</p>

 {{/if}}

{{#if label}}

 {{> _labelBottom}}
</div> {{!-- Close component div --}}

 {{> _labelRight}}

{{else}}
</div> {{!-- Close component div --}}

{{/if}}

452 Widgets

Copyright © 2013-2025 AnswerModules Sagl

<!-- END Text input-->

{{> _renderedClose}}

453 Widgets

Copyright © 2013-2025 AnswerModules Sagl

Designers can modify widgets' models properties using the Form Builder widgets configuration

panel. Any a widget's model modification triggers the immediate re-evaluation of the widget's

template resulting into an update of the source code.

Model properties details

Property Mandatory Default Note

fields YES {}
A map containing configuraiton options. The options names and

values are used to build the actual widget's model

title YES The widget's title as displayed in the left sidebar of the FormBuilder

help NO
The help message displayed in in the Form Builder configuration

panel, as well as on the FormBuilder's left sidebar

order NO
A list containing the widget's configuration's options names in the

order in which they should be displayed in the configuration panel

jsdependencies NO List of static javascript resources the widget depends on

cssdependencies NO List of static CSS resources the widget depends on

nonRendableWidgets NO false

if true the widget can be resized (if true columns field is

automatically injected among the widget's model fields list) (default:

true)

columns NO true
The help message displayed in in the Form Builder configuration

panel

binding NO true if true the widget can be bound to an attribute of the Form Template

style NO true
if true the field Custom Style is automatically injected among the

widget's model fields list.

validation NO true True if the widget support validation (default:true)

readonly NO true
if true the field Read Only is automatically injected among the

widget's model fields list.

container NO false

if true the widget will act as a container. The final view source code

for all the widgets that are, in the Form Builder's working area,

between the container opening and closing widget will result

wrapped by the source code generated by the widget itself. When

dropped in the Form Builder's main working area the corresponding

closing widget will be automatically created and bound to it. The

closing widget shall be named after the opening widget and suffixed

with _closed.

rendered NO true
True if the designer should be able to specify a condition under

which the widget will be displayed ("Show if" configuration option)



{{#if render}} expression in Widgets templates

As previously discussed, widget templates are mainly used to generate the VVTD, however they are also used to

generate the HTML code that represents the widget in the FormBuilder workspace. When the Widget template is

evaluated to generate the HTML for the FormBuilder workspace, an additional "render" property is injected into the

widget model, so the designer has the possibility to filter elements that should not be rendered in static HTML. (e.g.

any Velocity (https://velocity.apache.org/) expression).



454 Widgets

Copyright © 2013-2025 AnswerModules Sagl

https://velocity.apache.org/
https://velocity.apache.org/

Static Resources Management¶

Beautiful WebForms widgest might depend on static resources (Javascript and CSS files). These

dependencies are defined in the widget's model through the properties jsdependencies and

cssdependencies.

The definition of a static-resource dependency is represented by a list of three elements:

the reltaive 2 path to the static resource file

the version of the resource to load (a string formatted as "Major.Minor.Revision")

an optional list of dependency definitions for static resources this library depends on

E.g.

When a form is rendered the framework computes the list of all the static resources required

by the associated view's widgets. The list is optimized to avoid repetitions and to respect the

proper loading order. The final list of static dependencies is then automatically injected by the

framework in two ViewParams (/working/bwebforms/views/#viewparams)

variables:am_CssViewDependecies and am_JsViewDependecies.

Beautiful webForms View Templates utilize the aformentioned variables to render the HTML

code required to load the associated static files.

Two Velocity macros have been designed to handle this task:

These macros combine the contents of the variables am_CssViewDependecies and am_JsViewDependecies

with the list of dependencies specified as macro arguments (which are typically dependencies

specific to View Template (/working/bwebforms/views/#beautiful-webforms-view-templates))

to calculate the final list of static resources that must be loaded (producing at the same time

the relevant HTML code).

E.g.

•

•

•

["v2/css/select2/select2-bootstrap","3.5.4", [["v2/css/select2/select2","3.5.4"]]]

#macro(bwfJsResources $resList $blackList)
#macro(bwfCssResources $resList $blackList)

$blacklist resources not to be loaded

It is sometimes desirable that the static resources that need to be loaded to satisfy a widget's dependency are not

actually loaded, for example because they have been replaced by other resources already loaded by the View

Template (/working/bwebforms/views/#beautiful-webforms-view-templates), in these cases it is possible to pass

to the above mentioned macros an additional optional list of resources not to be loaded.

455 Widgets

Copyright © 2013-2025 AnswerModules Sagl

/working/bwebforms/views/#viewparams
/working/bwebforms/views/#viewparams
/working/bwebforms/views/#beautiful-webforms-view-templates
/working/bwebforms/views/#beautiful-webforms-view-templates
/working/bwebforms/views/#beautiful-webforms-view-templates
/working/bwebforms/views/#beautiful-webforms-view-templates
/working/bwebforms/views/#beautiful-webforms-view-templates

There are situations in which it is necessary to load multiple views dependecies when a

WebForm is rendered:

It is necessary whenever the WebForms can programmatically swithc view (e.g. a

Webform organized in tabs);

It is necessary whenever the WebForm's View makes use of SubViews widgets;

In these cases it is possibile to use the Content Script forms.addResourceDependencies API in the

view OnLoad (/working/bwebforms/views/#custom-logic-execution-hooks-cleh) CLEH Script to

force the framework to also load static resources dependencies from other Views.

The above mentioned API accepts three parameters: forms.addResourceDependencies(boolean loadJS,

boolean loadCSS, String[] viewNames)

A boolean flag indicating if Javascript resources should be loaded;

A boolean flag indicating if CSS resources should be loaded;

An optional list of Views from where to load dependecies from, if not specified resources

will be loaded for all the Views associated with the parent Form Template object;

#bwfCssResources([
['v2/css/am/am_form', "2.0.0"]
,['v2/css/font-awesome.min', "0.0.0"]
,['v2/css/metro-bootstrap.min', "0.0.0"]
,['v2/css/am/am_gridTable', "2.0.0"]
,["v2/css/select2/select2-bootstrap","3.5.4",

[
["v2/css/select2/select2","3.5.4"]

]
]

],
[["v2/css/bootstrap.min","3.3.6"]])

•

•

•

•

•

View Names

Prior to Module Suite version 2.7 (/releasenotes/2_0_0/) Views names had to be specified in single quotes.

E.g.

Starting with Module Suite version 2.7 (/releasenotes/2_0_0/) Views names have be specified without quotes.

E.g.

forms.addResourceDependencies(true, true, "'View2'", "'View3'")

forms.addResourceDependencies(true, true, "View2", "View3")

Performances-tips: Always load the minimum amout of resources necessary

When a Beautiful WebForm View is created the framework automatically injects in the OnLoad (/working/

bwebforms/views/#custom-logic-execution-hooks-cleh) CLEH Script the code required to load static resource

456 Widgets

Copyright © 2013-2025 AnswerModules Sagl

/working/bwebforms/views/#custom-logic-execution-hooks-cleh
/working/bwebforms/views/#custom-logic-execution-hooks-cleh
/releasenotes/2_0_0/
/releasenotes/2_0_0/
/releasenotes/2_0_0/
/releasenotes/2_0_0/
/working/bwebforms/views/#custom-logic-execution-hooks-cleh
/working/bwebforms/views/#custom-logic-execution-hooks-cleh
/working/bwebforms/views/#custom-logic-execution-hooks-cleh
/working/bwebforms/views/#custom-logic-execution-hooks-cleh

Widgets libraries¶

A Widgets library is defined as an extensible set of Widgets that can be used through the drag

& drop visual editor (FormBuilder). To simplify the navigation, the widgets are arranged in

families of objects having similar functionalities. Widgets within the same library use the same

initialization mechanism, as far as the JavaScript and CSS frameworks are concerned. Whenever

it is necessary or convenient to introduce breaking changes, in the way in which the widgets

are defined or in the way in which the widgets are managed, a new library is released.

Widget Library V1¶

This is the first version of the widget library shipped with the first version of Module Suite. This

widget library has been retired and is no longer supported since Module Suite version 2.6 (/

dependecies from all the other views beloging to the same parent Form Template object. This code works well and

has no impact on the performance of WebForm rendering, in most cases because Form Templates usually have very

few associated views. However , there are situations in which this behaviour is not desirable (e.g. the Form

Template contains many indipendent Views, the Form Template contains non active views etc..). loading static

resource dependecies from other Views when unnecessary could be expensive and even lead to hardly detectable

errors (e.g. a view in the template uses a different version of the widget library).

It's highly recommended, if your Form Template contains more than one view, to review the code automatically

injected by the framework and modify it by passing to the forms.addResourceDependencies API (line 3) the list of

Views from which it is actually necessary to load the resources.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

form.viewParams.ajaxEnabled=true
if(form.viewParams.ajaxEnabled && !form.viewParams.isResourcesInit){

forms.addResourceDependencies(form, true, true)
form.viewParams.isResourcesInit = true

}
if (form.isFirstLoad()){

//Code to be executed on first load only
// es. form.myField.value = 'my value'

}
else{

}

No need to update

Beautiful WebForms is always shipped with a copy of all still supported previous libraries. When a new library is

issued, customers are not required to immediatelly upgrade their views to it. They are free to keep working with

previous widget libraries.

Do not mix libraries

Given the nature of the differences between different libraries it is of highly recommended not to use widgets on

different libraries in the same view. Mixing widgets from different libraries can lead to unpredictable results or

errors.

457 Widgets

Copyright © 2013-2025 AnswerModules Sagl

/releasenotes/2_6_0/
/releasenotes/2_6_0/

releasenotes/2_6_0/). View Templates designed to work with library V1 are not compatible with

any other library. Do not use other libraries' widgets with these View Templates.

Widget Library V2¶

This version of the widget library was first introduced with Module Suite 2.0 (/releasenotes/

2_0_0/) and is still fully supported. This library is the first using the concept of static resources

management. View templates leveraging this library loads their static resource dependencies

through standard HTML tags <link> and <script>. The actual HTML code required to load

resources is produced by the two Velocity macros (bwfCssResources and bwfJsResources)

mentioned in the static resources management paragraph. View Templates designed to work

with library V2 are not compatible with any other library. Do not use other libraries' widgets

with these View Templates.

Widgets of library V2 have two additional model properties: jsdependencies and

cssdependencies, they represent the list of static javascript and css resources the widget

depends on:

The definition of a static-resource dependency is represented by a list of three elements:

the reltaive 2 path to the static resource file

the version of the resource to load (a string formatted as "Major.Minor.Revision")

an optional list of dependency definitions for static resources this library depends on

E.g.

Widget Library V3¶

This version of the widget library was first introduced with Module Suite 2.4 (/releasenotes/

2_4_0/) and is still fully supported. This library revised the concept of static resources

management. View templates leveraging this library loads their static resource dependencies

through standard HTML tags as far as CSS resources are concerned and a JavaScript file and

module loader Require JS (https://requirejs.org/) for Javascript resources. The actual HTML

code required to load CSS resources is produced by the the Velocity macro (bwfCssResources)

mentioned in the static resources management paragraph. View Templates designed to work

with library V3 are not compatible with any other library. Do not use other libraries' widgets

with these View Templates.

Widgets of library V3 have two additional model properties: jsdependencies and

cssdependencies, they represent the list of static javascript and css resources the widget

depends on:

•

•

•

...
jsdependencies:[["v2/css/select2/select2-bootstrap","3.5.4", [["v2/css/select2/select2","3.5.4"]]]]
...

458 Widgets

Copyright © 2013-2025 AnswerModules Sagl

/releasenotes/2_6_0/
/releasenotes/2_6_0/
/releasenotes/2_0_0/
/releasenotes/2_0_0/
/releasenotes/2_0_0/
/releasenotes/2_0_0/
/releasenotes/2_4_0/
/releasenotes/2_4_0/
/releasenotes/2_4_0/
/releasenotes/2_4_0/
https://requirejs.org/
https://requirejs.org/

CSS dependeciesJS dependecies

The definition of a static-resource CSS dependency is represented by a list of three elements:

the reltaive 2 path to the static resource file

the version of the resource to load (a string formatted as "Major.Minor.Revision")

an optional list of dependency definitions for static resources this library depends on

E.g.

The definition of a static-resource JS dependency is represented by a list of three elements:

the reltaive 2 path to the static Javascript bundle containing the modules to be loaded

the version of above mentioned bundle (a string formatted as "Major.Minor.Revision")

the list of module that are part of the bundle (modules are defined by a list made of

their name and version)

Widget Library V4¶

This version of the widget library was first introduced with Module Suite 2.6 (/releasenotes/

2_6_0/) and is still fully supported. This library it's an evolution of the previous iteration

(library V3) which significantly increases the compatibility with standard Smart View UI. View

templates leveraging this library loads their static resource dependencies through standard

HTML tags as far as CSS resources are concerned and a JavaScript file and module loader

Require JS (https://requirejs.org/) for Javascript resources, which is the same AMD library used

by native Content Server Smart View framework. The actual HTML code required to load CSS

resources is produced by the the Velocity macro (bwfCssResources) mentioned in the static

resources management paragraph. View Templates designed to work with library V4 are not

compatible with any other library. Do not use other libraries' widgets with these View Templates.

Widgets of library V4 have two additional model properties: jsdependencies and

cssdependencies, they represent the list of static javascript and css resources the widget

depends on:

•

•

•

...
"cssdependencies":[

["v3/js/handsontable/handsontable.full","4.0.0", [["v3/js/handsontable/pikaday","1.4.0"]]]
,["v3/css/select2/select2","3.5.4"]

]
...

•

•

•

...
"jsdependencies":[

["v3/js/handsontable/am_init","1.0.0",[["Handsontable","4.0.0"], ["pikaday","1.4.0"], ["numbro","2.0.6"]]]
]
...

459 Widgets

Copyright © 2013-2025 AnswerModules Sagl

/releasenotes/2_6_0/
/releasenotes/2_6_0/
/releasenotes/2_6_0/
/releasenotes/2_6_0/
https://requirejs.org/
https://requirejs.org/

CSS dependeciesJS dependecies

The definition of a static-resource CSS dependency is represented by a list of three elements:

the reltaive 3 path to the static resource file

the version of the resource to load (a string formatted as "Major.Minor.Revision")

an optional list of dependency definitions for static resources this library depends on

E.g.

The definition of a static-resource JS dependency is represented by a list of three elements:

the name of the Javascript bundle containing the modules to be loaded, the bundles and

the names of the modules no longer contain references to the name of the library

version

the version of above mentioned bundle (a string formatted as "Major.Minor.Revision")

the list of module that are part of the bundle (modules are defined by a list made of

their name and version)

FormBuilder acts as a Model View Controller framework with respect to BWF Widgets

Paths are relative to the folder /support/ansbwebform/lib

Paths are relative to the folder /support/ansbwebform/lib/v4, paths are defined in the View Template through

Velocity expressions

•

•

•

...
"cssdependencies":[

["amui/handsontable.full","4.0.0", [["amui/pikaday","1.4.0"]]]
,["amui/select2/select2","3.5.4"]

]
...

•

•

•

...
"jsdependencies":[

["bwf/handsontable/am_init","1.0.0"]
]
...

1. 

2. 

3.



460 Widgets

Copyright © 2013-2025 AnswerModules Sagl

Extending BWF

Content Script Volume¶

As for Content Script, Beautiful WebForms makes use of the Content Script Volume to store a

set of objects necessary for the correct operation of the framework. These object are stored in

specific containers, which will be covered on the following sections:

CSFormTemplates

CSFormSnippets

CSServices

CSScriptSnippets

CSServices¶

The CSServices (/working/contentscript/rest/) container is dedicated to Content Scripts that

should be accessible as REST services, and has been covered in the previous sections.

Content Script REST services are somehow related to Beautiful WebForms in that some

components used to build forms (essentially, the ones with AJAX capabilities) make use of

these services to work correctly.

An example is the getuserbyname REST service, which backs the user selection components

available in the form builder.

•

•

•

•

461 Extending BWF

Copyright © 2013-2025 AnswerModules Sagl

/working/contentscript/rest/
/working/contentscript/rest/
/working/contentscript/rest/

CSFormTemplates¶

The CSFormTemplates container is dedicated to HTML templates associated to Beautiful

WebForms Views.

The templates are essentially Velocity HTML templates. A placeholder expression indicating

where the actual Form Fieldset should be placed, this should usually be present in all Beautiful

WebForms Templates.

Beatiful WebForms Templates are grouped by the library version:

Content Script Volume

CSFormTemplates

V2

V3

V4

<custom template A>

<custom template B>

•

◦

▪

▪

▪

▪

▪

462 Extending BWF

Copyright © 2013-2025 AnswerModules Sagl

New templates added to a library version folder will automatically be available in the template

selection dropdown menu accessible from the Beautiful WebForms Views Specific Properties

tab.

CSFormSnippets¶

The CSFormSnippets container is dedicated to the libraries of components that are available

to build Beautiful WebForms views.

The CSFormSnippets container is organized on two levels: the first level is a container and

identifies the Component Family, while at the second level there are the actual components.

The Beatiful WebForms Snippets are stored in a two levels folders hierarchy: the first level is a

library version container, while the second level is a container that identifies the Component

Family.

Content Script Volume

CSFormSnippets

V2

V3

V4 - library version level

Buttons - Component Family level

Input

CheckBox

Datepicker

Text input

<custom component A>

•

◦

▪

▪

▪

▪

▪

▪

▪

▪

▪

463 Extending BWF

Copyright © 2013-2025 AnswerModules Sagl

Set

New component families and components created in this container will automatically be

available to the developer in the Beautiful WebForms Form Builder tool.

▪

464 Extending BWF

Copyright © 2013-2025 AnswerModules Sagl

Embed into Smart View¶

Why?¶

The main purpose of embedding BWF views into Smart View's tiles is to leverage the BWF

framework as a primary input mechanism for your next EIM applications. Integrating BWF into

Smart View wont just enable you to collect and validate user's input but also to perform

complex actions and surface the most relevant business information in highly interactive

dashboards.

Create an embeddable WebForms¶

Creating an embeddable webforms is not different from creating any other webform on the

system. The steps are:

Create a Form Template object

Create a Beautiful WebForm View view associated to the Form Template created in the

previous step

Using the Beautiful WebForms Form Builder define your form (structure and layout)

•

•

•

The embeddable view template

465 Embed into Smart View¶

Copyright © 2013-2025 AnswerModules Sagl

../../../working/bwebforms/editor/

Create a standard Content Server Form object and associate it to the previously created

Form Template and Beautiful WebForm View

How to publish a Webform into a Smart View

perspective¶

In order to publish a WebForm in a Smart View perspective's tile you need either:

or

ModuleSuite Smart Pages is installed¶

If the ModuleSuite Smart Pages is installed on your system you will be able to leverage the

tight integration between ModuleSuite and the OTCS Smart View in order to add WebForms in

perspective's tiles.

In this case the minimum Content Script required for managing the server side initialization of

the form will be:

What makes a Beautiful WebForms view embeddable into the Smart View is the usage of the V3:SmartView

Embeddable view template

•

ModuleSuite Smart Pages is installed

A Content Script object (for managing the server side initialization of the form)

An AnswerModules ModuleSuite:Content Script Result perspective tile, configured to use the above script

as datasource

1.

2.

ModuleSuite Smart Pages is not installed

A Content Script object (to mange the server side initialization of the form)

A WebReport to encapsulate the above script execution

An Content Intelligence:HTML WebReport perspective tile, configured to use the above script as Webreport

as datasource

1.

2.

3.

def formNode = docman.getNodeByPath("Path:To:Your:Form")
form = formNode.getFormInfo()

466 Embed into Smart View¶

Copyright © 2013-2025 AnswerModules Sagl

The configuration of the associated AnswerModules ModuleSuite:Content Script Result will be

as simple as:

ModuleSuite Smart Pages is not installed¶

If the ModuleSuite Smart Pages is not installed on your system you will not be able to leverage

the tight integration between ModuleSuite and the OTCS Smart View (i.e. adding WebForms in

perspective's tiles). As an alternative to Smart Pages you can leverage WebReport in order to

encapsulate a Beautiful Webform in a Smart View Perspective. In this case what you have to do

is to use the RUNCS sub-tag to trigger the execution of a properly configured Content Script.

You can refer to the example below for a reference:

The WebReport required to encapsulate the execution of the above script will be:

view = formNode.view
form.viewParams.uiParentID = params.uiParentID //The perspective current space

json([
output:view.renderView(binding, form),

widgetConfig:[
reloadCommands:["someCommand"],
tileContentClasses:"am-whitebckg",
tileLayoutClasses:"am-whitebckg"

]
]

)

gui.gui = false
def formNode = docman.getNodeByPath("Path:To:Your:Form")
form = formNode.getFormInfo()
view = formNode.view
out << view.renderView(binding, form)

467 Embed into Smart View¶

Copyright © 2013-2025 AnswerModules Sagl

The configuration of the associated Content Intelligence:HTML WebReport will be as simple as:

Beautiful Webforms views updater¶

What is it?¶

The Beautiful Webforms View Updater (BWVU) is an utility designed to simplify and automate

the process of upgrading a webform view designed with a previous version of Module Suite.

Module Suite IDEs allows you to keep working with the views created using the widget library

shipped with a previous version of Module Suite, nevertheless, in order to leverage the widgets

introduced in a newer version of the widget's library an upgrade is required.

This tool aims to simplify the upgrade procedure.

Installation¶

Prerequisites¶

Ensure you have administrative access to the OpenText Content Server to install the Beautiful

WebForms Updater.

[LL_REPTAG_'123456' RUNCS /] [// Script ID
[LL_WEBREPORT_STARTROW /]
[LL_WEBREPORT_ENDROW /]

468 Beautiful Webforms views updater¶

Copyright © 2013-2025 AnswerModules Sagl

Installation Steps¶

The Beautiful WebForms Updater is distributed as a standard Warehouse transport

package and can be downloaded from here.

For detailed steps on how to deploy a transport package, refer to the OpenText Content

Server administration's guide.

Getting Started¶

Once installed, access the Beautiful WebForms Updater tool by clicking on the Beautiful

WebForms Updater Form form.

1.

2.

469 Beautiful Webforms views updater¶

Copyright © 2013-2025 AnswerModules Sagl

../../../images/media/Beautiful%20WebForms%20Updater.zip

Main Dashboard¶

Upon opening the tool or after having performed an update operation, you are redirected to

the main dashboard. This area provides an activity log and the ability to manage the updates

performed.

Dashboard Features¶

Activity Log: Lists all actions taken, along with timestamps.

View Details: Includes the name of the view, the action taken, and the update or

restoration details.

Action Buttons: Offers "Delete" or "Restore" options for each log entry.

Navigating the Main Dashboard¶

To update the log, navigate away and return to the dashboard.

Remove log entries using the "Delete" button.

Use the "Restore" button to revert any updates, if necessary.

•

•

•

•

•

•

470 Beautiful Webforms views updater¶

Copyright © 2013-2025 AnswerModules Sagl

Update Views Configuration¶

To Proceed with the update your web forms click on the Update button from the Main

dashboard, you will be redirect to the Views Update Page.

Views Update Page

Library Update¶

Select the library version you want to upgrade to or from. For example, upgrading from V2 to V3.

Default View Template¶

Choose a default template that will be associated with all views after the update.

Content Source¶

Select the content source container of views to be updated.

Import the widgets library before trying to update your views

The tool requires that whatever version of the library you wish to upgrade to be fully imported into the Content

Script volume. The import can be managed using the Content Script Volume Import Tool

471 Beautiful Webforms views updater¶

Copyright © 2013-2025 AnswerModules Sagl

../../../images/media/image375.png
../../../administration/csvolume_import_tool/

Backup View¶

Toggle this option to "Yes" to create an XML backup of the view before updating.

View Ids¶

Enter the list of view IDs you wish to update, separated by commas.

Updating Views¶

Check the boxes next to the views you wish to update under the Views section.1.

472 Beautiful Webforms views updater¶

Copyright © 2013-2025 AnswerModules Sagl

Click the Update button to start the update process.

Help Guide¶

A Help Guide is available on the right-hand side of the page to assist you with the tool.

Troubleshooting¶

If you encounter any issues, refer to the Help Guide first, then contact our support team

(https://support.answermodules.com).

Conclusion¶

After following these steps, your views should be successfully updated with the new library

version or template.

Extension: Mobile WebForms

2.

Feature deprecated

This feature has been deprecated and removed from the product since version 2.9.

473 Extension: Mobile WebForms

Copyright © 2013-2025 AnswerModules Sagl

https://support.answermodules.com
https://support.answermodules.com
https://support.answermodules.com
https://support.answermodules.com

What is it?¶

AnswerModules’ Mobile WebForms is both: - An add-on solution for CSP/xECM. - A functional

extension for Module Suite (AnswerModules’ core solution).

AnswerModules’ Mobile WebForms consists of three macro components:

AppWorks Mobile Application¶

Every Mobile WebForms is transformed into an AppWorks application so that it can be it

distributed to end-users’ devices through the AppWorks Gateway. This approach guarantees a

very high degree of flexibility in terms of controlling access to the mobile form as well as

governing the mobile form’s data security. By leveraging the AppWorks technology, a mobile

form’s lifecycle can be fully managed (versioning, fine-grain user distribution, etc..), support for

specific devices may be pre-defined and if necessary saved data could be remotely deleted

from a specific device.

Module Suite based extension for REST APIs¶

By extending the CSP/xECM REST APIs a dedicated endpoint for Mobile WebForms has been

created. The endpoint can be easily extended or adapted in order to effectively open a

potentially infinite number of use cases when it comes to how form data is utilized and

persisted once its synchronized onto CSP/xECM. Some possible scenarios for how the form data

can be utilized include: starting or updating a workflow, creating Connected Workspaces

474 Extension: Mobile WebForms

Copyright © 2013-2025 AnswerModules Sagl

programmatically, generating documents (PDF, Word, Excel, etc…), transmitting the data to

another system (i.e.: CRM, ERP, etc…), and much more.

Mobile WebForms Application Builder¶

This component allows to create new AppWorks applications in a matter of minutes starting

from an existing form. An intuitive wizard-like tool guides users in defining all the necessary

elements to transform a simple WebForm into a Mobile WebForms. A preview of the process

can be viewed at: https://youtu.be/xiBjPMAH-HU (https://youtu.be/xiBjPMAH-HU)

Mobile WebForms setup¶

Installing the Mobile WebForms application on your system is a straightforward procedure

made of a few simple steps.

Download the Mobile WebForms Installation Package. (You can download it from here)

Extract the contents of the zip file to a temporary location.

Copy the contents of the Mobile Components.zip in the <Content_Server_home> directory

and then restart the Content Server services.

Logon to the OpenText Content Server with an administrative account.

Create a folder that will contain the installation package.

Upload the mobileWebFormsXML.xml file, in the previously created folder.

Create a Content Script in the same location for importing the package in the system.

(please refer to the snippet below as a reference).

The execution of the Content Script will generate a folder in the Enterprise Workspace named

“MobileWebForms” and will generate the application’s contents in it.

As administrator

The installation procedure must be performed using a user with administrative rights on the system (for example,

the administrator user)

•

•

•

•

•

•

•

def source = docman.getNodeByName(self.parent, "mobileWebFormsXML.xml")
def xmlFolder = docman.getNodeByName(self.parent, "Mobile WebForms")
if(!xmlFolder){

xmlFolder = admin.importXml(self.parent, source.content.content)
}
redirect "${url}/open/${docman.getNodeByName(xmlFolder, 'Install').ID}?scriptInstall=${self.ID}"

Pre-requisites

During the setup process the installer, will check if all the prerequisites are met. If the setup process notifies the

need of a missing extension package, install the package before continuing.

475 Extension: Mobile WebForms

Copyright © 2013-2025 AnswerModules Sagl

https://youtu.be/xiBjPMAH-HU
https://youtu.be/xiBjPMAH-HU
../resources/Mobile_WebForms_Package.zip

Using the tool¶

A Mobile WebForms application is composed of three main elements:

A form for inserting the information.

An end-point Content Script that will implement the logics to properly manage the data

upon synchronization from the OpenText AppWorks Gateway application.

An OpenText AppWorks Gateway application for distributing the application to the end

users.

Creating the form¶

The first step is the creation of the form that will be utilized to gather information from the

end users.

To install an extension package you can refer to the following guide: http://developer.answermodules.com/

manuals/current/installation/extpacks/ (http://developer.answermodules.com/manuals/current/installation/

extpacks/)

In the case the requested extension is the AnswerModules' Cache Extension Package then after the installation

some additional configuration will be needed.

To properly configure the AnswerModules’ Cache Extension Package refer to the below guide:

https://support.answermodules.com/portal/kb/articles/content-script-extension-cache (https://

support.answermodules.com/portal/kb/articles/content-script-extension-cache)

•

•

•

476 Extension: Mobile WebForms

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/current/installation/extpacks/
http://developer.answermodules.com/manuals/current/installation/extpacks/
http://developer.answermodules.com/manuals/current/installation/extpacks/
http://developer.answermodules.com/manuals/current/installation/extpacks/
http://developer.answermodules.com/manuals/current/installation/extpacks/
https://support.answermodules.com/portal/kb/articles/content-script-extension-cache
https://support.answermodules.com/portal/kb/articles/content-script-extension-cache
https://support.answermodules.com/portal/kb/articles/content-script-extension-cache
https://support.answermodules.com/portal/kb/articles/content-script-extension-cache

When editing the form's view with the Form Builder the widget library must be set to "Library

Mobile WebForms". As for the template to use there are two options under the "Library Mobile

WebForms" section:

Dev: this template offers the possibility to verify the look & feel of the form without the

need to deploy it on the OpenText AppWorks Gateway. This template should be only

utilized during the development phase or for debugging purposes.

White: this is template to be utilized when the application is ready to be deployed on the

OpenText AppWorks Gateway.

When editing a form's view with the Form Builder, the form's view will be pre-populated with

the widgets representing the elements inserted in the Form Template. A Mobile WebForms will

need to be designed using specific widgets coming from the Mobile WebForms Library, to do so

delete the self created widgets derived from the form template, verify that the Library Mobile

WebForms is selected, save the form's view and refresh the page. Once the page has refreshed

drag&drop the widgets from the left-hand side of the Form Builder to the form's view.

Implementing the Content Script end-point¶

When synchronizing the information back to Content Server, the Mobile WebForms application

will make a call to a Content Script.

For a detailed explanation on using AnswerModules' Content Scripts please refer to the

following guide: http://developer.answermodules.com/manuals/current/working/contentscript/

otcsobj/ (http://developer.answermodules.com/manuals/current/working/contentscript/

otcsobj/)

The Content Script must reside inside the CSServices folder within the Content Script Volume.

The script must contain all the business logic needed to properly manage the information that

is being synchronized from the OpenText Gateway application. The installation process will

•

•

477 Extension: Mobile WebForms

Copyright © 2013-2025 AnswerModules Sagl

http://developer.answermodules.com/manuals/current/working/contentscript/otcsobj/
http://developer.answermodules.com/manuals/current/working/contentscript/otcsobj/
http://developer.answermodules.com/manuals/current/working/contentscript/otcsobj/
http://developer.answermodules.com/manuals/current/working/contentscript/otcsobj/
http://developer.answermodules.com/manuals/current/working/contentscript/otcsobj/

create a default end-point called "mobileWebForms" please refer to it as a reference

implementation.

Building the OpenText AppWorks Gateway Application¶

To deploy the application on the OpenText AppWorks Gateway it will be necessary to prepare a

deployable package compliant with the OpenText AppWorks Gateway. The preparation of the

up-said package can be done via the Mobile WebForms application by opening the form

“Registered Applications”. The form can be found under

Enterprise\MobileWebForms\Application Builder\Builder

Once opened, the form will show the list of registered application. New applications can be

created by clicking on the "Create" button at the bottom of the page.

Clicking on the “Create” button will prompt the user for the application's details.

Application name

An icon for the application (to be shown as the application's icon on the mobile device)

A description (to be set as the application's description on the mobile device)

The remote end-point script name (called when synchronizing the form's data)

The Appworks Gateway version

The application’s version (When updating the application the version number must be

increased)

The related form

The specific view to be used

•

•

•

•

•

•

•

•

478 Extension: Mobile WebForms

Copyright © 2013-2025 AnswerModules Sagl

Clicking the “Create” button will automatically create an appropriate folder structure containing

all the application's required objects

Once the application's structure has been created it will be possible to create an OpenText

AppWorks Gateway deployable package by clicking on the "Build" button.

To upload the application to the OpenText AppWorks Gateway, enter the path and the

authentication credentials of the destination OpenText AppWorks Gateway and click "connect".

479 Extension: Mobile WebForms

Copyright © 2013-2025 AnswerModules Sagl

Once connected to the OpenText AppWorks Gateway, the system will enable the user to deploy

the application. Clicking on the deploy icon will automatically upload, install and enable the

application on the OpenTextAppWorks Gateway.

To verify the correctness of the process access the OpenText AppWorks Gateway and verify that

in the "Installed" section the application to be distributed is present and enabled.

The complete tour:

OpenText AppWorks Gateway

No information will be provided for installing and properly configuring the OpenText AppWorks Gateway. For

installing ad configuring the OpenText AppWorks Gateway please refer to the official OpenText documentation.

480 Extension: Mobile WebForms

Copyright © 2013-2025 AnswerModules Sagl

Extension: Remote WebForms

What is it?¶

Remote Beautiful WebForm is an extension package for Script Console (/working/scriptconsole/

base/) that allows you to deploy a Beautiful WebForms powered webform created on Content

Server on the Script Console engine.

The main purpose of this extension is to simplify the process of gathering the contribution of

users that do not have access to Content Server and synchronize these information back on

Content Server. An other quite common scenario, is the off-line usage of Content Server

webforms: the possibility of accessing, through a locally deployed Script Console instance, a

copy of a Content Server webform, even when a connection with Content Server is not available.

In both the cases the information submitted through the remote webform are stored locally

within the Script Console to be later synchronize back towards Content Server.

Extension setup¶

Installing the remote-webform extension package on a Script Console instance, is a straight

forward procedure which consists of just two steps:

Run the Script Console master installer and install the Remotable WebForms extension

package

•

481 Extension: Remote WebForms

Copyright © 2013-2025 AnswerModules Sagl

/working/scriptconsole/base/
/working/scriptconsole/base/
/working/scriptconsole/base/
/working/scriptconsole/base/

Copy all the static resources from the Beautiful WebForms Module Support in:

<Script Console Home>\config\img\ansbwebform

Copy all the static resources from the Content Script Module Support

(\support\anscontentscript) in:

<Script Console Home>\config\img\anscontentscript

Copy all the static resources from the Module Suite for SmartUI Module Support

(\support\anscontentsmartui) in:

<Script Console Home>\config\img\anscontentsmartui

•

•

•

482 Extension: Remote WebForms

Copyright © 2013-2025 AnswerModules Sagl

Create remote package¶

Beautiful WebForms deployable packages can be created either programmatically, using the

Content Script forms service or manually, through the Beautiful Webforms Studio application.

Using forms.createExPackage API¶

Content Script forms.createExPackage API can be used to programmatically create a deployable

Beautiful WebForms remote package. The API can be used from within a Beautiful WebForms

View CLEH script, or from any other Content Script object.

In most of the cases, if used within a stand-alone script, this API is used in conjunction with

forms.getFormInfo or forms.listFormData APIs.

Properly initialize the form object

It's important that you keep in mind that when the form object is loaded using the form service it is not initialized.

You can either initialize it as part of your script or rely on it's OnLoad CLEH for its proper initialization. Here below

an example of how properly initialize the form object:

Minimum initialization required

Initialization through the OnLoad script (if any)

def formNode= docman.getNodeByPath("Path:to:your:form")
form = formNode.getFormInfo()
forms.addResourceDependencies(form, true, true)

def formNode= docman.getNodeByPath("Path:to:your:form")

form = formNode.getFormInfo()
def bwfView = docman.getNode(form.amViewId)
def onLoad = bwfView.childrenFast.find{it.name == "OnLoad"}

if(onLoad){

483 Extension: Remote WebForms

Copyright © 2013-2025 AnswerModules Sagl

Using Beautiful Webforms Studio¶

Beautiful Webforms Studio which can be found at the following location: Content Script

Volume:CSTools:Beautiful WebForm Studio

Among the possibilities offered the studio application can help you leveraging the

forms.createExPackage through a simplified visual wizard. The first step is to select Export Remote

Form among the available actions.

than you'll be asked for a space on Content Server to be used as the wizard workspace (where

objects and content will be created):

docman.runContentScript(onLoad, binding)
}

forms.createExPackage(
Form form, // The form to export
String name, // An alpha-numeric identifier for the package to be created
String instructions, // The instruction to be displayed to help the user filling in the form
String nextUrl, // Where to redirect the user upon submission
Date validUpTo, // A date after which the form should no longer be available (can be null)
List<String> viewsToExport, // The names of the views you want to export as part of the package (can be null)

// if null all the views will be exported
String pin, // An optional pin that can be used to protect the access to the form on the console
CSDocument[] arrayOfDocuments // An optional list of documents to be exported as 'attachments' with the package

)

484 Extension: Remote WebForms

Copyright © 2013-2025 AnswerModules Sagl

finally you will be asked about export configuration parameters

Form: the form object to be exported

Title: the form's title as it will be displayed on the script console default dashboard

Name: the export package name (should be an alpha-numeric value)

Description: the form's description as it will be displayed on the script console default

dashboard

PIN: an optional PIN to be used in order to protect un-authorized access to the form on

the console

Redirect: an URL where to redirect user's navigation upon submission

View: an optional list of views names to be exported

Attachment(s): an optional list of documents to be exported

upon submission the export package file will be created in the selected workspace.

How to deploy a Beautiful WebForms remote form

package¶

The Beautiful WebForms remote form package is actually a .zip archive containing all objects

necessary to the form (view files, scripts, templates, etc.).

You can manually extract its contents in a new folder inside:

<Script Console Home>\config\scripts\ext\forms\forms

for example:

<Script Console Home>\config\scripts\ext\forms\forms\myform

•

•

•

•

•

•

•

•

485 Extension: Remote WebForms

Copyright © 2013-2025 AnswerModules Sagl

at this point, you should be able to access the form via the Script Console Dashboard, or via

direct URL.

Synchronize form data back to Content Server¶

Form data submitted on Script Console can be synchronized back to Content Server in different

ways which all are based on the same paradigm: the asynchronous exchange of information is

based on data files.

Data files can be moved from the Script Console to Content Server no matter which

transportation mechanism is used.

In the following paragraphs we will cover the most common scenarios.

Remote data pack files are produced on Script Console and sent over
to Content Server¶

In this scenario a local script is executed (or scheduled) on the Script Console in order to

collect submitted data and prepare the exchange data files to be sent over Content Server.

The Remotable Beautiful WebForms extension for Script Console comes with several exemplar

scripts of this kind that can be found at the following location:

<Script Console Home>\config\scripts\ext\forms

E.g synchLocal.cs

Script Console and Content Server can be isolated

In order to implement this scenario there is no need for the two systems to communicate each other.

import groovy.json.JsonSlurper
import groovy.io.FileType
import java.util.zip.ZipOutputStream
import java.util.zip.ZipEntry
formsAvailable = []
system = context.getAttribute("system")
formRepository = system.extensionRepositories.find{

it.repoHome.name == 'forms'
}
formRepositoryDir = new File(formRepository.getAbsolutePath(), "forms")
formRepositoryDirLocal = new File(formRepository.getAbsolutePath(), "inout")
if(formRepositoryDir && formRepositoryDir.isDirectory()){

def deleteFile = []
formRepositoryDirLocal.eachFileRecurse(FileType.FILES){

if(it.name.endsWith(".amf")){
File newForm = new File(formRepositoryDir, it.name-'.amf')
if(!newForm.mkdir()){

return
}
def zipFile = new java.util.zip.ZipFile(it)
zipFile.entries().each {

486 Extension: Remote WebForms

Copyright © 2013-2025 AnswerModules Sagl

If you want to schedule this kind of scripts to be automatically executed by the Script Console

you have to configure the job in the cs-console-schedulerConfiguration.xml file, which is a standard

Quartz scheduler configuration file. You should find a sample job in there.

Here below a configuration example:

ins = zipFile.getInputStream(it)
new File(newForm, it.name) << ins
ins.close()

}
zipFile.close();
deleteFile << it

}
}
deleteFile.each {

it.delete()
}

}
if (params.upload == 'true' && params.selform){

list =[]
list.addAll(params.selform)
toBeDeleted = []
list.each{ form->

formRepositoryDir = new File(formRepository.getAbsolutePath(), "data/$form")
if(formRepositoryDir && formRepositoryDir.isDirectory()){

formRepositoryDir.eachFileRecurse(FileType.FILES){
if(it.name == "data.amf"){

File dataPack = it.getParentFile()
String zipFileName = "${dataPack.name}.rpf"
File zipFile = new File(new File(formRepository.getAbsolutePath(), "temp"), zipFileName)
ZipOutputStream zipOS = new ZipOutputStream(new FileOutputStream(zipFile))
zapDir(dataPack.path, zipOS, dataPack.path)
zipOS.close()
zipFile.renameTo(new File(formRepositoryDirLocal, zipFile.name))
toBeDeleted << dataPack

}
}

}
}
toBeDeleted.each{

it.deleteDir()
}

}
def static zapDir(String dir2zip, ZipOutputStream zos, String stripDir) {

File zipDir = new File(dir2zip)
def dirList = zipDir.list()
byte[] readBuffer = new byte[2156]
int bytesIn = 0
dirList.each {

File f = new File(zipDir, it)
if(f.isDirectory())

zapDir(f.path, zos, stripDir)
else {

FileInputStream fis = new FileInputStream(f)
ZipEntry anEntry = new ZipEntry(f.path.substring(stripDir.length()+1))
zos.putNextEntry(anEntry)
while((bytesIn = fis.read(readBuffer)) != -1) {

zos.write(readBuffer, 0, bytesIn);
}
fis.close();

}
}

}
redirect params.nextUrl

487 Extension: Remote WebForms

Copyright © 2013-2025 AnswerModules Sagl

Later on Content Server the data files are unpacked using the forms service from within a

Content Script that can be either manually executed or scheduled.

E.g.

<?xml version="1.0" encoding="UTF-8"?>
<job-scheduling-data

xmlns="http://www.quartz-scheduler.org/xml/JobSchedulingData"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.quartz-scheduler.org/xml/JobSchedulingData http://www.quartz-scheduler.org/xml/job_scheduling_data_1_8.xsd"
version="1.8">
<pre-processing-commands>

<delete-jobs-in-group>*</delete-jobs-in-group> <!-- clear all jobs in scheduler -->
<delete-triggers-in-group>*</delete-triggers-in-group> <!-- clear all triggers in scheduler -->

</pre-processing-commands>
<processing-directives>

<!-- if there are any jobs/trigger in scheduler of same name (as in this
 file), overwrite them -->

<overwrite-existing-data>true</overwrite-existing-data>
<!-- if there are any jobs/trigger in scheduler of same name (as in this

 file), and over-write is false, ignore them rather then generating an error -->
<ignore-duplicates>false</ignore-duplicates>

</processing-directives>
<schedule>

<job>
<name>PollJobSynchronization</name>
<group>Synchronization</group>
<job-class>com.answer.modules.cscript.console.scheduler.CommandLauncherJob</job-class>
<job-data-map>

<entry>
<key>script</key>
<value>ext/forms/synchLocal.cs</value>

</entry>
<entry>

<key>system</key>
<value>LOCAL</value>

</entry>
</job-data-map>

</job>
<trigger>

<cron>
<name>LaunchEvery1Minutes</name>
<group>SynchronizationTriggerGroup</group>
<job-name>PollJobSynchronization</job-name>
<job-group>Synchronization</job-group>
<start-time>2010-02-09T12:26:00.0</start-time>
<end-time>2020-02-09T12:26:00.0</end-time>
<misfire-instruction>MISFIRE_INSTRUCTION_SMART_POLICY</misfire-instruction>
<cron-expression>0 * * ? * *</cron-expression>
<time-zone>America/Los_Angeles</time-zone>

</cron>
</trigger>

</schedule>
</job-scheduling-data>

// remPack is a data pack file, how this file was obtained is not relevant.
// It may have been fetched from an email folder, a ftp server, a shared folder a cloud service,
// or even uploaded on Content Server using web-services, etc...
def packList = forms.getExPackageContent(remPack) // returns a Map<String, CSResource>

if(packList."data.amf"){
def res = packList.find{it.key == "data.amf"}.value
def form = forms.deserializeForm(res.content.getText("UTF-8"))

488 Extension: Remote WebForms

Copyright © 2013-2025 AnswerModules Sagl

Form data are submitted directly from Script Console¶

This scenario can be implemented executing or scheduling a script similar to the one reported

here below on the Script Console:

// The form object can be used for various purposes
// Submitting the data back to Content Server
forms.submitForm(form)

// Starting a workflow
def damageInvestigation = docman.getNodeByPath("Fleet Management:Workflows:Damage Ingestigation Map")

def inst = forms.startWorkFlow(damageInvestigation, form, "Form", "Damage Ingestigation - Veichle: ${form.number.value} - Employee: ${form.employee.value} ")

// Seding on a running workflow
def task = workflow.getWorkFlowTask(form.getAmWorkID(), form.getAmSubWorkID(), form.getAmTaskID())

forms.updateWorkFlowForm(
task, //The task
"Form Name", //The form name
form, //The form object
true // True if the task should be sent on

)

}

Script Console and Content Server can't be isolated

In order to implement this scenario the two systems shall be able to communicate each other.

import groovy.io.FileType

log.debug("Running Your Form Synch Job")

formsAvailable = []
system = context.get("system")
formRepository = system.extensionRepositories.find{

it.repoHome.name == 'forms'
}

//Synch up
formRepositoryDirParent = new File(formRepository.getAbsolutePath(), "data")
def toBeDeleted = []
formRepositoryDirParent.eachFileRecurse(FileType.DIRECTORIES){ formRepositoryDir->

if(("yourform").equalsIgnoreCase(formRepositoryDir.name)){
if(formRepositoryDir && formRepositoryDir.isDirectory()){

formRepositoryDir.eachFileRecurse(FileType.FILES){
if(it.name == "data.amf"){

formObj = forms.deserializeForm(it.text)
File dataPack = it.getParentFile()
try{

forms.submitForm(formObj)
toBeDeleted << dataPack

}catch(e){
log.error("Unable to synch data back to OTCS",e)

}
}

}
}

}
}

489 Extension: Remote WebForms

Copyright © 2013-2025 AnswerModules Sagl

If you want to schedule this kind of scripts to be automatically executed by the Script Console

you have to configure the job in the cs-console-schedulerConfiguration.xml file, which is a standard

Quartz scheduler configuration file. You should find a sample job in there.

Here below a configuration example:

toBeDeleted.each{
it.deleteDir()

}

<?xml version="1.0" encoding="UTF-8"?>
<job-scheduling-data

xmlns="http://www.quartz-scheduler.org/xml/JobSchedulingData"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.quartz-scheduler.org/xml/JobSchedulingData http://www.quartz-scheduler.org/xml/job_scheduling_data_1_8.xsd"
version="1.8">
<pre-processing-commands>

<delete-jobs-in-group>*</delete-jobs-in-group> <!-- clear all jobs in scheduler -->
<delete-triggers-in-group>*</delete-triggers-in-group> <!-- clear all triggers in scheduler -->

</pre-processing-commands>
<processing-directives>

<!-- if there are any jobs/trigger in scheduler of same name (as in this
 file), overwrite them -->

<overwrite-existing-data>true</overwrite-existing-data>
<!-- if there are any jobs/trigger in scheduler of same name (as in this

 file), and over-write is false, ignore them rather then generating an error -->
<ignore-duplicates>false</ignore-duplicates>

</processing-directives>
<schedule>

<job>
<name>PollJobSynchronization</name>
<group>Synchronization</group>
<job-class>com.answer.modules.cscript.console.scheduler.CommandLauncherJob</job-class>
<job-data-map>

<entry>
<key>script</key>
<value>ext/forms/submitMyFormLocal.cs</value>

</entry>
<entry>

<key>system</key>
<value>LOCAL</value>

</entry>
</job-data-map>

</job>
<trigger>

<cron>
<name>LaunchEvery1Minutes</name>
<group>SynchronizationTriggerGroup</group>
<job-name>PollJobSynchronization</job-name>
<job-group>Synchronization</job-group>
<start-time>2010-02-09T12:26:00.0</start-time>
<end-time>2020-02-09T12:26:00.0</end-time>
<misfire-instruction>MISFIRE_INSTRUCTION_SMART_POLICY</misfire-instruction>
<cron-expression>0 * * ? * *</cron-expression>
<time-zone>America/Los_Angeles</time-zone>

</cron>
</trigger>

</schedule>
</job-scheduling-data>

490 Extension: Remote WebForms

Copyright © 2013-2025 AnswerModules Sagl

Smart Pages

Getting Started with Smart Pages¶

This guide provides a quick introduction to Module Suite Smart Pages and helps you get

started with creating custom Smart View perspectives and interfaces.

What is Smart Pages?¶

Smart Pages is a Module Suite component that introduces new features for users who need

extra flexibility when creating customized Smart View perspectives. It enables you to use Smart

View in place of the Classic UI for your Content Server applications.

For a comprehensive overview, see the Introduction to Smart Pages.

Key Components¶

The Smart Pages extension includes:

Smart UI Tile Library - A new set of Smart View tiles available in the Perspective Builder

Widget Library

Smart Page Objects - Content Server objects for creating presentation components

Content Script Data Sources - Scripts that provide dynamic data to tiles

Smart View Overrides - Low-coding capabilities to customize Smart View menus,

columns, and actions

Beautiful WebForms Integration - Embed web forms directly in Smart View perspectives

Quick Start Guide¶

1. Understanding the Basics¶

Start by reading the Introduction to Smart Pages to understand:

What Smart Pages can do

Use cases and examples

Architecture overview

•

•

•

•

•

•

•

•

491 Smart Pages

Copyright © 2013-2025 AnswerModules Sagl

../introduction/
../introduction/

2. Working with Tiles¶

Learn about the available tiles and how to configure them:

Smart UI Tiles - Complete tile reference and configuration guide

Tile Communication - How tiles communicate with each other

3. Creating Smart Pages¶

Learn how to create and manage Smart Page objects:

Smart Pages Object - Creation, properties, and the Smart Pages Editor IDE

Smart Pages Editor - Learn how to design a Smart Page

4. Customizing Smart View¶

Extend Smart View functionality:

Smart View Overrides - Custom menus, columns, and actions

5. Integrating WebForms¶

Embed forms in Smart View:

WebForms Integration - Embedding Beautiful WebForms in Smart Pages

6. Advanced Features¶

Explore advanced capabilities:

Smart Pages Commands - Using Smart View commands for advanced interactions

Smart Pages Fundamentals¶

Introduction¶

OpenText Smart View (or Smart View) is an innovative UI Framework built around the concept

of component reuse. However, the creation of new Smart View components ("Tiles") is an

activity that can require a consistent amount of development efforts and requires in-depth

knowledge of both the base libraries of the Smart View framework and the Smart View SDK.

For this reason, a limited number of ready-to-use components are available in Smart View.

•

•

•

•

•

•

•

492 Smart Pages Fundamentals¶

Copyright © 2013-2025 AnswerModules Sagl

../tiles/
../tile_communication/
smartpages_object.md
smartpages_editor.md
../overrides/
../webforms_integration/
../commands/

What is "Smart Pages"?¶

The ultimate purpose of Smart Pages is to bring a significant improvement in the way Smart

View perspectives are built, simplifying the task of organizing information in Smart View and

enabling end-users to interact with much more productive interfaces.

An example of dashboard built with Smart Pages

A few examples of the most relevant use-cases are:

Building tailored web user interfaces compliant with Smart View look & feel and UX

Building tailored Smart View dashboards for data analysis and reporting

Publishing contextualized web forms in Smart View Perspectives

Adding custom elements to standard elements of the Smart Views, such as menu entries

and columns

Smart Pages: Usage Examples¶

Tailored Perspectives with Custom Tiles¶

Smart Pages enables you to create custom perspectives that combine standard Smart View

tiles with Module Suite tiles to create powerful, tailored interfaces.

•

•

•

•

493 Smart Pages Fundamentals¶

Copyright © 2013-2025 AnswerModules Sagl

Tailored Smart View Features (Menus, Columns)¶

You can extend Smart View functionality by adding custom menu entries and columns to the

standard Node Table tile, providing additional context and actions without requiring SDK

development.

Standalone UIs¶

Smart Pages can be used to create standalone user interfaces that can be embedded in Smart

View perspectives or accessed directly.

494 Smart Pages Fundamentals¶

Copyright © 2013-2025 AnswerModules Sagl

Embedded Forms¶

Smart Pages integrates seamlessly with Beautiful WebForms, allowing you to embed web forms

directly into Smart View perspectives.

495 Smart Pages Fundamentals¶

Copyright © 2013-2025 AnswerModules Sagl

Smart Pages in the Module Suite Architecture¶

Smart Pages is a core component of the Module Suite architecture, providing a bridge between

Content Script and Smart View.

flowchart TB

 subgraph MS["OT Content Management"]

 B["Content Script"]

 C["Smart View"]

 D["Smart Pages"]

 end

 B L_B_C_0@-- communicates --> C

 B --> D

 D -- embedded --> C

 style B fill:#fff,stroke:#D50000

 style C fill:#fff,stroke:#068fd7

 style D fill:transparent,stroke:#2962FF

 L_B_C_0@{ curve: natural }

What's in the Smart Pages Toolkit?¶

The Smart Pages toolkit includes:

✅ A custom Smart UI Tile Library, that can be used to extend the capabilities of the

Smart UI perspective manager to build enhanced perspectives

✅ The actual Smart Page object, a new Content Server object that can be used to create

presentation components

✅ Smart View overrides, that can be used to integrate additional features in the

standard Nodes Table Tile (at the moment, menus and columns)

✅ Smart Pages Beautiful WebForms integration, used to bring the Module Suite web

forms technology in the Smart View domain

Important

Smart Pages replace the Module Suite extension for Smart View which has been discontinued in Module Suite

version 1.8.

•

•

•

•

496 Smart Pages Fundamentals¶

Copyright © 2013-2025 AnswerModules Sagl

Next Steps¶

Now that you understand the fundamentals of Smart Pages, you can explore:

Smart UI Tiles - Learn about the available tiles and how to configure them

Smart Pages Object - Learn how to create and manage Smart Page objects

Smart Pages Editor - Learn how to design a Smart Page

Smart View Overrides - Learn how to customize Smart View menus and columns

Tile Communication - Learn how tiles communicate with each other

WebForms Integration - Learn how to embed Beautiful WebForms in Smart Pages

The Smart Pages Object¶

Overview¶

The Smart Page is a new Content Server object type that can be used to create presentation

components. Smart Pages leverage the Content Script template engine's capabilities to create

UI elements of any sort by adopting a rigorous MVC (Model-View-Controller) design pattern.

•

•

•

•

•

•

497 The Smart Pages Object¶

Copyright © 2013-2025 AnswerModules Sagl

../tiles/
smartpages_object.md
smartpages_editor.md
../overrides/
../tile_communication/
../webforms_integration/

Creating a Smart Page¶

Prerequisites¶

Before creating a Smart Page, ensure that:

Module Suite is installed and activated

Smart Pages extension is enabled

You have appropriate permissions to create Content Script and Smart Page objects

Creation Steps¶

Navigate to the location where you want to create the Smart Page

Click "New" and select "Smart Page" from the object types list

Provide a name for the Smart Page

Click "Create"

Understanding the Smart Page object¶

Smart Page: The MVC Pattern¶

Below is a conceptual diagram illustrating the Model-View-Controller (MVC) framework as

applied to Smart Pages:

flowchart LR

 Controller["Content Script
(Controller)"]

 Model["Data
(Model)"]

 View["Smart Page
(View)"]

 Controller -- "prepares data" --> Model

 Model -- "passed as input" --> View

 Controller -- "renders" --> View

 style Controller fill:#D50000,color:#ffffff,stroke:#B71C1C

 style Model fill:#ffffff,stroke:#ccc

 style View fill:#068fd7,color:#ffffff,stroke:#01579B

Smart Page (View): Implements the presentation, using the data provided.

Content Script (Controller): Prepares and supplies data (the model), and controls the

rendering logic.

Data (Model): Passed from the Content Script to the Smart Page as input.

Smart Page pages are much more than simple html-views. They are active objects that can be

used to create very complex applications. In order to implement all their additional

•

•

•

1.

2.

3.

4.

•

•

•

498 The Smart Pages Object¶

Copyright © 2013-2025 AnswerModules Sagl

functionalities, Smart Pages pages are decorated with a set of information used by the Smart

Page framework for determining how to render, and how to display the model-data within them.

In the image above a simplified representation of the information that constitutes a Smart

Page page is highlighted:

(A) View's versions: Smart Page pages are versioned document-class objects. Each version

is, in the very end, nothing but a Velocity (http://velocity.apache.org/) template

document (HTML code + template expressions).

(B) For each version created with the PageBuilder's smart-editor the Smart Page

framework archives the smart-editor view's "model" into an internal database (a Json file

within the page). The smart-editor view's model is constituted by the list of the

configurations used for each widget that build the page.

(C) Page's properties: Smart Page pages are associated with a set of predefined properties

persisted as the object's extended data. These properties are related just to the last

page's version.

The page's predefined properties are:

PageBuilder mode used for creating the current page's version (either "source

code" or "smart editor")

The list of static "css" page's dependecies dynamically determined on the basis of

the widgets used to build the page

The list of static "javascript" page's dependecies dynamically determined on the

basis of the widgets used to build the page

The number of page's columns

The identifier of the library of widgets used to build the page

The ID of the page template (if any) associated to the view

Next Steps¶

Smart Pages Editor - Learn how to design a Smart Page

Learn about Smart View Overrides to customize Smart View behavior

Explore Tile Communication for inter-tile communication

See WebForms Integration for embedding forms in Smart Pages

•

•

•

1.

2.

3.

4.

5.

6.

•

•

•

•

499 The Smart Pages Object¶

Copyright © 2013-2025 AnswerModules Sagl

http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/
smartpages_editor.md
../overrides/
../tile_communication/
../webforms_integration/

The Smart Pages Object¶

Editing a Smart Page: The Smart Pages Editor IDE¶

The Smart Pages Editor is the privileged IDE for Smart Pages. On the first load of an empty

Smart Page, the Editor will initialize it with a default template structure. The page will then be

available for further editing.

Layout¶

The IDE is composed of a set of areas and controls, with different purposes.

The Main Working Area shows a preview of the current Smart Page, with the available

content elements

The Widget Library (on the left) features a set of predefined widgets and components,

which can be easily dragged and dropped in the working area

The Configurator panel (on the right) is linked to the element currently selected in the

main working area

AI-Based Smart Page Builder¶

The AI-Based Smart Page Builder is an experimental feature that enables designers to create

Smart Pages using natural language prompts. Instead of manually writing code or dragging and

•

•

•

500 The Smart Pages Object¶

Copyright © 2013-2025 AnswerModules Sagl

dropping widgets, you can simply describe the page requirements, and C.A.R.L. (the AI assistant)

will automatically generate the page for you.

How It Works¶

The AI-Based Smart Page Builder uses an agentic workflow architecture that processes your

requests through a sophisticated multi-agent system:

Coordinator Agent: When you submit a request, a coordinator agent first analyzes it and

creates an execution plan. This plan determines what needs to be done to satisfy your

requirements, including:

Identifying which data sources need to be created or configured

Determining which widgets and components are most appropriate

Organizing the page layout and structure

Component Agents: Once the plan is determined, specialized component agents work in

parallel to configure each element according to the coordinator's plan. Each component

agent is dedicated to a specific component type and handles its configuration

independently.

1.

2.

3.

4.

5.

User Confirmation Required

Every change made by the AI requires your explicit confirmation before being applied to the Smart Page. This

ensures you maintain full control over the page design and can review all AI-generated modifications before they

are implemented.

501 The Smart Pages Object¶

Copyright © 2013-2025 AnswerModules Sagl

Key Features¶

Natural Language Page Creation: Simply describe what you want in the page, and the AI

will create it automatically

UI Guidelines Support: You can provide UI guidelines to guide the AI's design decisions,

ensuring the generated pages match your design standards

Agent Configuration: Fine-tune the AI's behavior through a dedicated configuration panel

that allows you to adjust various agent parameters

Single Component Configuration¶

In addition to creating entire pages, you can also use the AI feature to configure individual

components. When you select a specific component and interact with C.A.R.L., the AI will focus

solely on that component's configuration without modifying the rest of the page. This allows

you to:

Refine individual component settings using natural language

Get AI assistance for specific component properties

Make targeted improvements without affecting other page elements

Context Support¶

The AI-Based Smart Page Builder supports adding files and images to the context, enabling the

AI to:

Understand visual requirements from reference images

Process documentation or specifications provided as files

Generate pages that match design mockups or examples

This context-aware capability allows for more accurate page generation based on visual and

textual references.

Next Steps¶

Learn about Smart View Overrides to customize Smart View behavior

Explore Tile Communication for inter-tile communication

See WebForms Integration for embedding forms in Smart Pages

•

•

•

•

•

•

•

•

•

C.A.R.L. Required

The AI-Based Smart Page Builder is an experimental feature that requires C.A.R.L. integration to be enabled and

properly configured on your system. Without C.A.R.L., this feature will not be available.

•

•

•

502 The Smart Pages Object¶

Copyright © 2013-2025 AnswerModules Sagl

../overrides/
../tile_communication/
../webforms_integration/

WebForms in Smart Pages¶

Overview¶

Smart Pages integrates seamlessly with Beautiful WebForms, allowing you to embed web forms

directly into Smart View perspectives. This integration brings the full power of the Module Suite

web forms technology into the Smart View domain.

Why Embed WebForms in Smart Pages?¶

The main purpose of embedding Beautiful WebForms views into Smart View's tiles is to leverage

the BWF framework as a primary input mechanism for your EIM applications. Integrating BWF

into Smart View enables you to:

Collect and validate user input within Smart View interfaces

Perform complex actions through form submissions

Surface relevant business information in highly interactive dashboards

Create seamless user experiences without leaving Smart View

Prerequisites¶

Before embedding WebForms in Smart Pages, ensure:

Module Suite is installed and activated

Beautiful WebForms extension is installed

Smart Pages extension is enabled

You have appropriate permissions to create Form Templates and Views

Creating an Embeddable WebForm¶

Creating an embeddable webform is not different from creating any other webform in the

system. The steps are:

Create a Form Template object

Create a Beautiful WebForm View associated to the Form Template created in the

previous step

WebForms in Smart Pages

Placeholder for Image

Add a screenshot showing a web form embedded in a Smart View perspective

•

•

•

•

•

•

•

•

1.

2.

503 WebForms in Smart Pages¶

Copyright © 2013-2025 AnswerModules Sagl

Using the Beautiful WebForms Form Builder, define your form (structure and layout)

Create a standard Content Server Form object and associate it to the previously created

Form Template and Beautiful WebForm View

Embedding WebForms in Smart Pages¶

Method 1: Using Content Script Result Tile¶

The recommended approach is to use the Include WebForms widget. This widget requires a

piece of Content Script business logic to be injected into the Controller script. The injection

happens automatically whenever you save the widget's configuration.

The following example shows the Content Script snippet that initializes and renders the form:

Next Steps¶

Review Beautiful WebForms Documentation for detailed form building

Explore Tile Communication for form-tile interactions

Learn about Smart Pages Object for advanced page creation

3.

4.

model.data["view_12345"] = {
// Retrieve the form node by ID
formNode = docman.getNodeFast(12345)

// Get form information and view
form = formNode.getFormInfo()
view = formNode.view

// Set flag indicating the form is embedded in another application (e.g., using the XECM business workspace widget in an XECM scenario)
form.viewParams.am_in_page = model.data.serverOrigin != ''

// Initialize field values
form.aField.value = "Test Me"

// Set view parameters that can be used by the form
form.viewParams.aVariable = 1234
form.viewParams.anOtherVariable = docman.getNodeByPath("My:Path").ID

// Add resource dependencies (required if the form uses multiple views or subviews)
forms.addResourceDependencies(form, true, true)

// Return the form data structure with dependencies and rendered HTML
return [

id: formNode.ID,
jsDeps: view.jsDeps + (form.viewParams.am_JsViewDependencies ?: []),
cssDeps: view.cssDeps + (form.viewParams.am_CssViewDependencies ?: []),
html: view.renderView(binding, form, true)

]
}

•

•

•

504 WebForms in Smart Pages¶

Copyright © 2013-2025 AnswerModules Sagl

../bwebforms/index.md
../tile_communication/
../otcsobj/

Smart UI Tiles¶

Smart Pages enables an extended set of pre-built tiles to be available within the Smart View

Perspective Manager tile library.

These can be added to perspectives just as any other out-of-the-box tile, and mixed &

matched with other standard components.

Available Smart Page Tiles¶

The following tiles are available in the AnswerModules Module Suite section of the Widget

Library:

Charts - Used to create data visualization charts

Links - Create a "menu" tile including a custom, dynamic list of links and actions

Tree - Display a dynamic, lazy-loaded tree structure that can be used to display or access

hierarchical data

Content Script Node Table - Display an alternative version of the standard Node

Browsing Table tile with customizable Content Script data source

News - Display a list of expandable, actionable news items

Tiles - An advanced version of the original Links Tile that allows for better usage of the

screen space

Content Script Result - A general-purpose tile that can be used to inject any output

generated by a Content Script Data source or a Smart Page

•

•

•

•

•

•

•

505 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Tile Configuration¶

Module Suite tiles share some common configuration options, while other options are specific

to single tiles.

Common Configuration Options¶

Common options include:

External frame configuration (header, scrolling content, title, icon)

Data Source configuration - All Module Suite tiles require a Content Script object that

acts as a Data Source

Parameter passing - Additional parameters can be passed to the script and will be

available in the params variable

•

•

•

506 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Icon Configuration - When configuring the tile's icon, two different approaches are

possible:

CSS Style Class: Specify a CSS style class to apply to the icon element. This should

define the rules needed to apply the desired icon.

Module Suite Icon Set: Specify the name (and color scheme) of the desired icon

among the ones available in the Module Suite icon set. See the Icon Reference

Cheat Sheet for a full list of options.

Dynamic Configuration - Module Suite tiles are designed to dynamically load their

configuration from the same data source that supplies their data. This process is

initiated by invoking the data source prior to the tile's rendering. To identify requests for

•

1.

2.

•

507 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

configuration-only data, the widgetConfig parameter is used. This parameter signals the

data source that it's being called specifically for tile configuration.

Content Script Data Sources¶

All Module Suite tiles require a Content Script object that will be executed when the tile

content is created. This script acts as a Data Source for the tile, and allows to make its content

dynamic.

The data source script receives:

params - A map containing all parameters passed from the tile configuration

widgetConfig - A boolean parameter indicating if the script is being called for configuration

purposes

The script should return data in a format specific to the tile type being used.

Considerations for Dynamic Configuration

Flexibility vs. Initial Load Time: While this feature offers increased flexibility, it does come with the

trade-off of additional loading time for the initial data source call.

Optimized Data Source Responses: It's advisable to configure the data source in a way that

recognizes when it's being called solely for configuration purposes. Implementing strategies such as

caching mechanisms or the use of static data can significantly expedite the configuration delivery.

◦

◦

•

•

508 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Tile Library Reference¶

Content Script Tile Chart¶

The Content Script Tile Chart is a tile who's purpose is to create interactive charts within the

Smart View. The data shown in the charts will be provided by a Content Script data source.

Chart tiles leverage two different javascript libraries:

Chartist (supported for backward compatibility)

Chart.js (suggested)

Depending on the selected chart type, the appropriate configuration has to be provided in

JSON format.

ExampleDatasource

•

•

509 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

def rand = new Random()

if(params.widgetConfig){

json(widgetConfig:[
reloadCommands:["updateChart"],
html:"""

<small>Move the mouse over the chart for triggering data-reload</small>
<script>
 csui.onReady2([
 "csui/lib/jquery",
 "csui/lib/underscore",
 "csui/lib/radio"],
 function(jQ, _, Radio){

 //Get the page message bus
 var amChannel = Radio.channel('ampagenotify');

 //Get the chart
 var chart = amChannel.request("ampages:myChart");

510 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

 var canvas = jQ("#myChart");
 canvas.unbind("click");
 canvas.on("click", function (evt) {
 var activePoints = chart.getElementsAtEvent(evt);
 var vals = _.map(_.pluck(_.filter(chart.legend.legendItems, function(it){ return it.hidden==false}), "text"), function(value){ return value;}).join("|");
 if(!_.isUndefined(activePoints[0])){
 var chartData = activePoints[0]['_chart'].config.data;
 var idx = activePoints[0]['_index'];

 var label = chartData.labels[idx];
 var value = chartData.datasets[0].data[idx];
 amChannel.trigger("updateChart", [{name:"where_type", value:label}]);

 } else {
 amChannel.trigger("updateChart", [{name:"where_type", value:vals}]);
 }
 });

 canvas.hover(function(){
 var self = jQ(this);
 //jQ(".myChartLoader").removeClass("binf-hidden");
 amChannel.trigger("updateChart", [{name:"filter", value:"first"}]);
 });
 });
</script>"""

])
}else{

json([

type:"bar",
data:
[

labels: ["red", "green"],
datasets: [

[
label: "My First dataset",
backgroundColor: "${AMBWFWidgetsLib.getBehaviour("ambwf","generateRandomHTMLColor", this)(rand)}",
borderColor: "${AMBWFWidgetsLib.getBehaviour("ambwf","generateRandomHTMLColor", this)(rand)}",
data: [rand.nextInt(100), rand.nextInt(100)],

],
[

label: "My Second dataset",
borderColor: "${AMBWFWidgetsLib.getBehaviour("ambwf","generateRandomHTMLColor", this)(rand)}",
backgroundColor: "${AMBWFWidgetsLib.getBehaviour("ambwf","generateRandomHTMLColor", this)(rand)}",
data: [rand.nextInt(100), rand.nextInt(100)],

]
]

],
options: [

maintainAspectRatio: false,
title: [

display: true,
text: 'myChart',
position: 'left'

],
legend: [

display: true,
position: 'top'

],
scales: [

yAxes: [
[

ticks: [

511 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Content Script Tile Tiles¶

The Content Script Tile Tiles is a tile meant to create a customizable list of clickable links and

HTML Tiles. The data controlling the links is provided by the backing Content Script data source.

ExampleDatasource

beginAtZero:true
]

]
]

]
]

])
}

app = runCS("am_businessCompliance")
if(params.widgetConfig){

json(widgetConfig : [
reloadCommands : ["updateTiles"], // The widget will be refreshed when this command is executed
html : """

512 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

 <link type="text/css" rel="stylesheet" data-csui-required="true" href="${app.config.static.tilesCss}">
 <script>
 csui.onReady2([
 'csui/lib/jquery',
 'csui/lib/underscore',
 'csui/lib/marionette',
 'csui/lib/radio',
 'csui/utils/commands',
 'csui/controls/side.panel/side.panel.view',
 'csui/controls/tile/behaviors/perfect.scrolling.behavior',
 'anscontentSmart View/utils/contexts/factories/scriptjsonresult.model.factory'
],
 function (jQ, _, Marionette, Radio, CommandsRegistry, SidePanelView, PerfectScrollingBehavior, ContentScriptModelFactory) {
 var ContentView = Marionette.View.extend({
 constructor: function ContentView(options) {
 this.widgetConfig = options.widgetConfig || {};
 this.options = options;
 Marionette.View.prototype.constructor.apply(this, arguments);
 },
 className: 'anscontentSmart View-tile-content-script',
 render: function () {
 var source;
 if (this.model) {
 source = this.model.get('cssource');
 if (!_.isUndefined(source)) {
 var self = this;
 csui.require(['csui/lib/jquery'], function (jQ) {
 jQ(self.\$el).html(source);
 });
 }
 }
 return this;
 },
 className: 'amsui-exp-content-script',
 behaviors: {
 PerfectScrolling: {
 behaviorClass: PerfectScrollingBehavior,
 contentParent: ".am-Smart View",
 suppressScrollX: true,
 scrollYMarginOffset: 15,
 scrollingDisabled: false
 }
 }
 });

 // Get the page message bus
 var amChannel = Radio.channel('ampagenotify');
 amChannel.off("tiles_action");
 amChannel.on("tiles_action", function (action, param) { //action = panel|1234|My Title|80
 if(action.startsWith('panel')){
 var scriptID = undefined;
 var title = "Action Panel";
 var panelWidth = 80;
 var params = undefined;
 if(action.includes("|")){
 var tokens = action.split('|')
 if(tokens.length >= 2){
 if(jQ.isNumeric(tokens[1])){ //panel|1234...
 scriptID = tokens[1];
 params = param;
 if(tokens.length >= 3){
 if(jQ.isNumeric(tokens[2])){ //panel|1234|80
 panelWidth = tokens[2];
 }else{ //panel|1234|My Title
 title = _.escape(tokens[2]);
 if(tokens.length >= 4){
 if(jQ.isNumeric(tokens[3])){ //panel|1234|My Title|80
 panelWidth = tokens[3];
 }

513 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

 }
 }
 }
 }else{
 //panel|My title...
 title = _.escape(tokens[1]);
 if(tokens.length >= 3){
 if(jQ.isNumeric(tokens[2])){ //panel|My Title|80
 panelWidth = tokens[2];
 }
 }
 }
 }
 if(scriptID === undefined){
 scriptID = param;
 }
 }

 if(jQ.isNumeric(scriptID)){
 var context = amChannel.request("ampages:pageContext");
 var scriptAttrs = { source: scriptID };
 var script = context.getModel(ContentScriptModelFactory, { attributes: scriptAttrs });
 if(params != undefined){
 script.attributes.parameters = [{ name: "actionParams", value: params }];
 }
 var slides = [
 {
 title : title,
 content : new ContentView({ model: script })
 }
];
 script.fetch().then(function () {
 var dialog = new SidePanelView(_.extend({
 sidePanelClassName : "amsui-Smart View-slide-panel-"+panelWidth+"vw",
 openFrom : "right",
 slides : slides
 }));

 dialog.show();
 amChannel.on("tiles_panel:hide", function () {
 dialog.hide();
 });
 });
 } else {
 console.log("Error opening panel - invalid settings.")
 }
 };
 });
 });
 </script>
 <style>
 .binf-widgets [data-csui-widget_type=tilelinkstiles_content_script] .am-tile-content{
 padding-right: 15px;
 }
 </style>
 """])

} else {

json(
data : [

styleclass : "myStyleClass",
rows : [

[// First row
styleclass : "",
size : 1, // The relative height of this row compared to other rows (default : 1)
tiles : [

[// First Tile
size : 1, // The relative size of this tile compared to others in the row (default : 1)
styleclass : "",

514 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

html : """<div class="showcase-tiles-heading">
 <div class="showcase-tiles-heading-main">Third party due diligence</div>
 <div style="font-size: 0.6em;">Process to manage the engagement, monitoring and payment of third parties</div>
 </div>
 """

]
]

],
[//Empty Row

styleclass : "myStyleClass",
size : 1, // The relative height of this row compared to other rows (default : 1)
tiles : [

[// First Tile
size : 1, // The relative size of this tile compared to others in the row (default : 1)
styleclass : "myStyleClass",
html : """<div class="showcase-tiles-section"></div>"""

]
]

],
[

styleclass : "",
size : 1, // The relative height of this row compared to other rows (default : 1)
tiles : [

[
size : 1, // The relative size of this tile compared to others in the row (default : 1)
styleclass : "",
html : """<div class="showcase-tiles-section" style="text-align: left; padding-left: 18px; font-size: 1em;">

 The Business Compliance process has been implemented as a case management application.
 It is intended to demonstrate how it is possible to manage a Business Compliance process by
 integrating a Connected Workspace, representing a third party, with a list of tasks for managing the
 different steps such as assessment, engagement, monitoring and payment of the above, in accordance with
 internal regulatory requirements.
 </div>"""

]
]

],
[

size : 3,
tiles : [

[// First Tile
size : 1,
type : 'red', // Available types: red, green, blue, orange, teal, gold, purple
front : [

icon : "${img}anscontentSmart View/app/image/icons/windows10/white/risk_assesment.svg",
body : """3""",
body_text_align : 'right', // left, center, right (default)
body_text_size : 'jumbo', // small (90%), normal (100%), large (200%), jumbo (300%)
title : "Late Tasks"

],
back : [

icon : "${img}anscontentSmart View/app/image/icons/windows10/white/task.svg",
title : "Late Tasks",
body_text_align : 'center',
body : """Potuit, iam districtum mucronem in proprium latus inpegit. hocque deformi genere mortis excessit e vita iustissimus

 rector ausus miserabiles casus levare multorum. hinc ille commotus ut iniusta perferens et indigna praefecti
 custodiam protectoribus mandaverat fidis."""

]
],
[// Second Tile

size : 1,
type : 'green', // Available types: red, green, blue, orange, teal, gold, purple
front : [

icon : "${img}anscontentSmart View/app/image/icons/windows10/white/public_private_company.svg",
body : """9""",
body_text_align : 'right', // left, center, right (default)
body_text_size : 'jumbo', // small (90%), normal (100%), large (200%), jumbo (300%)
title : "Active Processes"

],
back : [

515 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

icon : "${img}anscontentSmart View/app/image/icons/windows10/white/task.svg",
title : "Active Processes",
body_text_align : 'center',
body : """<table class="binf-table binf-table-condensed">

 <thead>
 <tr>
 <th>First Col</th>
 <th>Second Col</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Some Data</td>
 <td>Other Data</td>
 </tr>
 </tbody>
 </table>"""

]
],

]
],
[

size : 3,
tiles : [

[
size : 1,
type : 'teal', // Available types: red, green, blue, orange, teal, gold, purple
front : [

icon : "${img}anscontentSmart View/app/image/icons/windows10/white/flag.svg",
body : """254""",
body_text_align : 'right', // left, center, right (default)
body_text_size : 'large', // small (90%), normal (100%), large (200%), jumbo (300%)
title : "Registered Third Parties"

],
back : [

icon : "${img}anscontentSmart View/app/image/icons/windows10/white/flag.svg",
title : "Registered Third Parties"

]
],
[

size : 1,
type : 'orange', // Available types: red, green, blue, orange, teal, gold, purple
front : [

icon : "${img}anscontentSmart View/app/image/icons/windows10/white/task.svg",
body : """42""",
body_text_align : 'right', // left, center, right (default)
body_text_size : 'jumbo', // small (90%), normal (100%), large (200%), jumbo (300%)
title : "Open Tasks"

],
back : [

icon : "${img}anscontentSmart View/app/image/icons/windows10/white/task.svg",
title : "Open Tasks"

]
],

]
],
[

styleclass : "myStyleClass",
size : 1, // The relative height of this row compared to other rows (default : 1)
tiles : [

[// First Tile
size : 1, // The relative size of this tile compared to others in the row (default : 1)
styleclass : "myStyleClass",
html : """<div class="showcase-tiles-section"> Actions </div>"""

]
]

],
[

size : 0,

516 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

tiles : [
[

size : 12,
styleclass : "",
command : "tiles", // Custom command
action : "panel|Register New Third-Party|60",
params : app.config.pages.caseNew, //The action's parameter
newtab : false,
type : 'green',
front : [

icon : "${app.config.static.resourcesPath}add.svg",
body : "Start Business Compliance Process",

]
]

]
],
[

size : 0,
tiles : [

[
size : 12,
styleclass : "",
command : "cases", // Custom command
action : "z_changeMode",
params : "grid", //The action's parameter
newtab : false,
type : 'green',
front : [

icon : "${img}anscontentSmart View/app/image/icons/windows10/white/report2.svg",
body : "Business Compliance List",
//title : "Analytics"

]
]

]
],
[

size : 0,
tiles : [

[
size : 12,
styleclass : "",
command : "cases", // Custom command
action : "z_changeMode",
params : "stats", //The action's parameter
newtab : false,
type : 'green',
front : [

icon : "${img}anscontentSmart View/app/image/icons/windows10/white/stats_line_chart.svg",
body : "Analytics",
//title : "Analytics"

]
]

]
],
[

size : 0,
tiles : [

[
size : 12,
styleclass : "",
command : "cases", // Custom command
action : "z_changeMode",
params : "kaban", //The action's parameter
newtab : false,
type : 'green',
front : [

icon : "${img}anscontentSmart View/app/image/icons/windows10/white/diversity.svg",
body : "Business Compliance By Status",

]

517 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Content Script Tile Links¶

The Content Script Tile Links is a tile meant to create a customizable list of clickable links. The

data controlling the links is provided by the backing Content Script data source.

ExampleDatasource

]
]

],
[

size : 0,
tiles : [

[
size : 12,
styleclass : "",
command : "cases", // Custom command
action : "z_changeMode",
params : "conf", //The action's parameter
newtab : false,
type : 'green',
front : [

icon : "${app.config.static.resourcesPath}settings.svg",
body : "Configuration",

]
]

]
],
//Empty
[

styleclass : "myStyleClass",
size : 1, // The relative height of this row compared to other rows (default : 1)
tiles : [

[
size : 1, // The relative size of this tile compared to others in the row (default : 1)
styleclass : "myStyleClass",
html : """<div class="showcase-tiles-section"></div>"""

]
]

],
]

]
)

}

518 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

if(params.widgetConfig){

json(widgetConfig:[
reloadCommands:["updateLinks"],
html:"""

 <style>
 div.ans-tile-content-linkstiles{
 background: linear-gradient(180deg, #122c69 0%, #078db3 100%);
 color:#fff;
 height:100%;
 }

 div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(2),
 div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(6),
 div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(10){
 background:#00639b;
 color:#fff;
 border-radius:0px;
 }
 div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(3),
 div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(7),
 div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(11){
 background:#df3324;
 color:#fff;
 border-radius:0px;
 }
 div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(4),
 div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(8),
 div.ans-tile-content-linkstiles > div.binf-list-group > a:nth-child(12){
 background:#008485;
 color:#fff;
 border-radius:0px;
 }

 </style>
 <div style="padding:20px; background-color:white;margin-bottom:10px;color:#333" >
 Click on the differnt links to see them in action.
 </div>
 <script>

519 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

 csui.onReady2(['csui/lib/underscore',
 'csui/lib/backbone',
 'csui/lib/jquery',
 'csui/lib/radio'],
 function(_,Backbone, jQ, Radio){
 var amChannel = Radio.channel("ampagenotify");
 amChannel.on("smartPage_action", function(action,param){
 console.log("GOT Page Action request. Action: "+action+ " parameter: "+param);
 });

 });
 </script>
 """

])
}else{

retVal =
[

data:[
links:[

[
issection:true,
name:"First Section",

],
[

issection:false,
icon:"csui-icon-home",
name:"First Link (Navigate)",
desc:"More information for this link",

url:"#", //If action != null url must be set equal to #
action:"navigate", //Will trigger a browse action of the current view
params:"2000", //The DataID of the node you wanto to navigate to

],
[

issection:false,
icon:"icon-tileExpand icon-perspective-open",
name:"Duplicate (Action)",

url:"#", //If action != null url must be set equal to #
action:"notify", //Will trigger the execution of the command below
command:"updateLinks", //The action to execute
params:"duplicate", //The action's parameter, this value will be passed to the script in a parameter named "tile"

],
[

issection:false,
icon:"icon-socialFavOpen",
name:"Notify Smart Page (Page Action)",

url:"#", //If action != null url must be set equal to #
command:"smartPage", //The SmartPage(s) to notify
action:"updatePage", //The action to execute
params:"2000" //The action's parameter

],
[

issection:false,
am_icon:"am_icon_link",
am_icon_schema:"am_icon_green",
name:"Simple link",

url:"http://www.answermodules.com",
newtab:true

]

]

520 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Content Script Tile Tree¶

The Content Script Tile Tree creates an interactive tree structure with nodes that can be

expanded and collapsed. The tree structure uses a Content Script data source for the initial

data and for subsequent ajax data load calls.

ExampleDatasource

]
]

if(params.tile == "duplicate"){
retVal.data.links += retVal.data.links[-5].clone()
retVal.data.links += retVal.data.links[-5]
retVal.data.links += retVal.data.links[-5]
retVal.data.links += retVal.data.links[-5]

retVal.data.links[-4].name = "Second Section"
}else if(params.tile == "triple"){

retVal.data.links += retVal.data.links[-5].clone()
retVal.data.links += retVal.data.links[-5]
retVal.data.links += retVal.data.links[-5]
retVal.data.links += retVal.data.links[-5]

retVal.data.links[-4].name = "Second Section"

retVal.data.links += retVal.data.links[-4].clone()
retVal.data.links += retVal.data.links[-4]
retVal.data.links += retVal.data.links[-4]
retVal.data.links += retVal.data.links[-4]

retVal.data.links[-4].name = "Third Section"
}

json(
retVal

)

}

521 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

if(params.widgetConfig){
json([id : 2,

widgetConfig : [
tileLayoutClasses : "",
tileContentClasses : "",
reloadCommands : ["updateTree"],
root : 2000,
plugins : ["wholerow"],
theme : ['name': 'proton',

'responsive': true],
html : """

 <style>
 div.ans-tile-tree{
 background: linear-gradient(180deg, #122c69 0%, #078db3 100%);
 color:#fff;
 height:calc(100vh - 222px);
 font-size:13px !important;
 }
 .binf-widgets .jstree-proton .jstree-icon.csui-icon-node-task {
 background-image:url('${img}csui/themes/carbonfiber/image/icons/mime_task.svg')
 }
 .binf-widgets .jstree-proton .jstree-icon.mime_pdf{
 background-image:url('${img}csui/themes/carbonfiber/image/icons/mime_pdf.svg')
 }
 .jstree-anchor small{
 font-size:.9em;
 font-style:italic;
 }
 </style>
 <div class="am-form-text-input" style="margin-top: 1px;padding: 5px 0px;">
 <label class=" control-label col-form-label am-form-text-input-label am-form-label-top" style="padding: 5px;">Filter tree</label>
 <div class="am-form-input-wrap" style="padding: 0 5px;">
 <input id="filter" type="text" placeholder="" class="form-control" style="border-radius: 0px;box-shadow: none;">
 </div>
 </div>

 <script>
 csui.onReady2(['csui/lib/underscore',
 'csui/lib/backbone',
 'csui/lib/jquery',
 'csui/lib/radio'],

522 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

 function(_,Backbone, jQ, Radio){
 var amChannel = Radio.channel("ampagenotify");
 amChannel.on("printConsole", function(params){
 console.log("GOT request "+JSON.stringify(params));
 });
 amChannel.on("smartPage_action", function(action,param){
 console.log("GOT Page Action request. Action: "+action+ " parameter: "+param);
 });
 jQ("#filter").on("blur", function(){
 amChannel.trigger("updateTree",{'term':jQ(this).val()})
 })

 });
 </script>"""

]
])

return
}

data =

[
[

icon : "csui-icon cs_vfolder", //mime_folder, cs_folder_root, cs_vfolder, cs_folder_open...
id : 1,
text : "Roots",
children : [

[
action : "navigate", //Trigger a Smart View navigation
icon : "csui-icon cs_folder_root", //cs_folder_root, cs_vfolder, cs_folder_open
id : 2000, //The node will be used as the action's parameter
text : "Home",
children : false

]

],
state : [

opened : true
]

],
[

action : "printConsole", //Trigger a Tile action
params : "3", //This value will be passed to the script in a parameter named 'tile'
icon : "csui-icon mime_folder",
id : 3,
text : "Folder (Lazy Loaded)",
children : true,
state : [

opened : false
]

]
]

if(params.uiParentID == "3"){
data[1].children = [

[

icon : "csui-icon mime_folder",
id : 4,
text : "Sub Folder",
children : [

[
notify : "smartPage", //Triggers a Smart Page action noifying the provided page(s) (CSV)
action : "customAction", //The action to execute
params : "2000", //The action's parameter
icon : "csui-icon mime_pdf",

523 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Content Script Node Table¶

The Content Script Node Table is an enhancement of the standard Node Table tile. The tile

uses a Content Script as data source, allowing to set up any custom business logic to generate

the list of nodes to be shown.

ExampleDatasource

id : 5,
text : "Notify Smart Page",
children : false

],
[

action : "printConsole",
params : "2000",
icon : "csui-icon mime_pdf",
id : 6,
text : "Execute Action",
children : false

]

]
]

]
}
if(params.term){

data = data.findAll{it.text.startsWith(params.term)}
}
json(data)

524 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

def targetSpaceFilter = 2000

def subtypeFilter = "144".split(",")

if(params.widgetConfig){
json([
widgetConfig:[

reloadCommands:["updateData"],
columnsWithSearch:["Owner", "Name"]

]
])
return

}

if(params.page?.contains("_") && params.page_list){
if(params.page_list[0].contains("_") && !params.page_list?[1]?.contains("_")){

params.page = params.page_list[1]
}else if(!params.page_list[0].contains("_") && params.page_list?[1]?.contains("_")){

params.page = params.page_list[0]
}

}

def paging = [actual_count:0,
limit:((params.limit?:"30") as int),
page:((params.page?:"1") as int),
page_total:0,
range_max:0,
range_min:0,
total_count:0,
total_row_count:0,
total_source_count:0]

def pageSize = paging.limit
def offset = (paging.limit * (paging.page - 1))
def firstRow = offset + 1
def lastRow = firstRow + paging.limit

nodes = []

def nameFilter = null
if(params.where_name){

nameFilter = "%${params.where_name}%"
}

def ownerFilter = null
if(params.where_owner){

ownerFilter = "%${params.where_owner}%"
}

def sortingOrderParam = 'desc'
def sortingColumnParam = 'name'

def sortingOrder = 'DESC'
def sortingColumn = 'DTree.Name'

if(params.sort && params.sort.contains('_')){

def sorting = params.sort.split('_')

sortingOrderParam = sorting[0]
sortingColumnParam = sorting[1]

sortingOrder = (sortingOrderParam == 'asc') ? 'ASC' : 'DESC'

switch(sortingColumnParam?.trim()){

525 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

case 'name' :
sortingColumn = 'DTree.Name'
break

case 'owner' :
sortingColumn = 'KUAF.ID'
break

default :
sortingColumn = 'DTree.Name'
break

}

}

try{

def queryParams = [targetSpaceFilter as String]
def queryIndex = 1

def permExpr = "(exists (select DataID from DTreeACL aclT where aclT.DataID=DTree.DataID and ${users.getRightsStringForSQL("RightID", false)} and See >1))"

sqlCode = """ select DTree.DataID "DID",
 DTree.Name "NAME",
 COUNT(*) OVER() as "overall_count"

 from DTree
 LEFT JOIN KUAF ON DTree.UserID = KUAF.ID

 where DTree.ParentID = %1 """

if(subtypeFilter.size() == 1){
sqlCode += " and DTree.SubType = %${++queryIndex} "
queryParams << (subtypeFilter[0] as long)

} else if(subtypeFilter.size() > 1) {
sqlCode += " and DTree.SubType IN (${subtypeFilter.join(',')}) "

}

if(nameFilter){
sqlCode += " and DTree.Name LIKE %${++queryIndex} "
queryParams << (nameFilter as String)

}

if(ownerFilter){
sqlCode += " and (KUAF.Name LIKE %${++queryIndex} OR KUAF.LastName LIKE %${queryIndex}) "
queryParams << (ownerFilter as String)

}

if(!users.current.canAdministerSystem){
sqlCode += " and ${permExpr} "

}

sqlCode += """
 ORDER BY ${sortingColumn} ${sortingOrder}
 OFFSET ${offset} ROWS
 FETCH NEXT ${pageSize} ROWS ONLY

 """

def queryResults

if(queryParams){
queryResults = sql.runSQLFast(sqlCode, true, true, 100, *queryParams).rows

526 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

} else {
queryResults = sql.runSQLFast(sqlCode, true, true, 100).rows

}

def totalCount = (queryResults) ? queryResults[0].overall_count : 0

nodes = queryResults?.collect{it.DID as Long}

paging << [
actual_count:totalCount,
page_total:((totalCount%paging.limit)+1),
range_min:paging.page*paging.limit-paging.limit+1,
range_max:(paging.limit*(paging.page+1)-totalCount)>0?(paging.limit*(paging.page+1)-totalCount):paging.limit*(paging.page+1),
total_count:totalCount,
total_row_count:totalCount,
total_source_count:totalCount]

}catch(e){
log.error("Error loading nodes table data",e)
printError(e)

}

def drawStatusBar = { node ->

def statusList = ['Draft', 'Under Revision', 'Approved', 'Published']
def numSteps = statusList.size()
def currStep = new Random().nextInt(statusList.size())
def currStepName = statusList[currStep]

def stepStyle = "height:100%; width:calc(100% / ${numSteps}); float:left; background-color:#F0AD4E; box-sizing:border-box;"

def stepsHtml = ""

(currStep + 1).times{
stepsHtml += """"""

}

return """
 <div style="text-align:center; font-size:.75em">${currStepName}</div>
 <div style="margin:3px 0; padding:0; height:5px; background-color:#eee;">${stepsHtml}</div>"""

}

def slurper = new JsonSlurper()

def processNode = { node, myNode ->

/* Add your custom node post-processing here */

//def myNode = asCSNode(node?.data.properties.id as long)

node.data.amcsproxy = [
columns: [:],
commands:[]

]

//Add custom column: node.data.amcsproxy.colums.sample_column = "My custom Value"

def owner = myNode.createdBy
def ownerBox = " ${owner.displayName}"
node.data.amcsproxy.columns.owner = ownerBox

527 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

node.data.amcsproxy.columns.comment = myNode.comment
node.data.amcsproxy.columns.statusBar = drawStatusBar(myNode)

return node
}

results = []

def fields = JsonOutput.toJson([
'actions': ['fields': []],
'properties': ['fields': []],
'versions': ['fields': []],
'amcsproxy': ['fields': []],

])

//Identifies actions to be displayed for every node
//Node actions are return together with data request thay may lead to additinal response time
// [] - docman.getNodesRestV2JSon will not process actions.
// Actions will be processed on a separate call based on the list provided (see returned json object at the end of this script)
// null - default list of actions will be returned
// ['open','properties','copy','move','edit'] - sample list of actions
// To ideal actions processing requires you to assign an empty list (see below) to the nodesActions variable below and pass the list of commands to be retrived
// using the 'actions' list property of the json object returned by this script (see last line)
def nodesActions = []

if(nodes.size() > 1){
log.error("Nodes ${nodes}")
temp = slurper.parseText(docman.getNodesRestV2JSon(nodes, fields, '{"properties":{"fields":["parent_id"]}}', false, false, nodesActions))
theNodes = docman.getNodesFastWith(nodes, [], params, false, false, false)
nodes.each{ node ->

def jsonNode = temp.find{ it.data.properties.id == node }
results << processNode(jsonNode, theNodes.find{it.ID == node})

}

} else if (nodes.size() == 1){

it = slurper.parseText(docman.getNodesRestV2JSon(nodes, fields, '{"properties":{"fields":["parent_id"]}}', false, false, nodesActions))
processNode(it, docman.getNodeFast(nodes[0]))

results = [it]
}

def columns = [

type: [
key:"type",
name:"Type",
type:2,
type_name:"Integer",
sort:false

]

,name: [
key:"name",
name:"Name",
type:-1,
type_name:"String",
sort:true,
align:"left"

]

,owner: [
key:"owner",
name:"Owner",

528 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Content Script Result¶

The Content Script Result is a general-purpose tile that can be used to inject any output

generated by a Content Script Data source or a Smart Page into a SmartUI perspective.

type:43200,
type_name:"String",
sort:true,
align:"left"

]

,statusBar: [
key:"statusBar",
name:"Doc. Status",
type:43200,
type_name:"String",
sort:false,
align:"left"

]

,comment: [
key:"comment",
name:"Comment",
type:-1,
type_name:"String",
sort:false,
align:"left"

]
]

// actions - list of commands defined for all the nodes listed in the page
// action=[] - will return all possible actions for a node
json(

[
paging:paging,
columnsWithSearch:["name" , "owner"],
results:results,
columns:columns,
tableColumns:columns,
widgetConfig:[

reloadCommands:["updateData"]
],
actions: ['open','properties','copy']

]
)

529 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Icon Reference Cheat Sheet¶

Iconset Color Codes¶

Module Suite icons are available in the following colors:

All Icons¶

A complete list of the currently available icons is shown below:

530 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

531 Smart UI Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Next Steps¶

Learn about Smart Pages Object creation and management

Explore Smart View Overrides for customizing menus and columns

Understand Tile Communication between different tiles

Smart View Overrides¶

Overview¶

Smart View overrides allow you to customize several aspects of the Smart View without having

to rely on the Smart View SDK and without the need to deploy new artifacts on Content Server

servers. This low-coding approach enables rapid customization of Smart View features.

General Concepts¶

Like many other features in Module Suite, Smart View overrides follow a convention-based

configuration approach. For applying a customization to the Smart View UI using one of the

supported overrides, it is sufficient, in most cases, to create the appropriate script under the

appropriate Content Script Volume folder.

Folder Structure¶

Smart View overrides are organized as follows:

•

•

•

Content Script Volume
└── CSSmartView
 ├── Actions # Used to define lazy loaded actions to be displayed in nodes' related actionbars
 ├── Commands # Used to define new commands to be displayed in nodes' related actionbars
 ├── Columns # Used to define custom dynamic columns to be displayed in Content Server spaces
 ├── MetaPanels # Used to define custom dynamic Metadata Panels that can be added alongside an object's standard metadata panels, enabling enhanced or context-specific metadata display
 └── Overrides # Overrides configuration. Its content determines when and where a particular override is used

532 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

smartpages_object.md
../overrides/
../tile_communication/

Override Map (OM) and Actual Override Map (AOM)¶

Having a possible serious impact on the end user experience, it is important that the system is

effective in calculating how, where and when overrides should be applied.

For this reason, Module Suite uses an elaborate algorithm to determine the Actual Override

Map (AOM) to use when overrides should be applied.

Override Map Structure¶

The content of the Overrides folder is used to compute an Override Map (OM), specific to your

repository, having the following structure:

OM = [
"globals": [// (1) Scripts to be always executed

540588
],
"type": [// (2) Scripts for specific subtypes

"144": [// (3) Scripts for Documents (subtype 144)
548066

]
],
"tenants": [// (4) Tenant-specific overrides

"497147": [// (5) Tenant DataID
"globals": [// (6) Tenant global overrides

548169
],
"type": [// (7) Tenant subtype overrides

"144": [// (8) Documents in this tenant
496932

]
],
"ids": [// (9) Specific node overrides

"496931": [// (10) Specific node DataID
545972

]
]

]
]

]

533 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Override Evaluation Order¶

The configuration options are processed in the following order:

Global Overrides (scripts found directly under the Override folder) are executed first.

Subtype Overrides (scripts found within a Subtype folder - e.g. "S144" for Documents) will

be evaluated second, and might overwrite the global overrides.

Tenant Global Overrides (any object in the tenant) will be evaluated next (3rd globally).

Tenant Subtype Overrides will go next (4th globally) to process objects of a specific

subtype within the selected tenant.

Tenant DataID Overrides go last (5th globally). These are overrides targeting a specific

object, and thus have the highest priority.

flowchart TD

 Start([Override Evaluation Starts]) --> Global[1. Global Overrides
Override folder root]

 Global --> Subtype[2. Subtype Overrides
S144, S0, etc.]

 Subtype --> TenantGlobal[3. Tenant Global Overrides
D+TenantID/root]

 TenantGlobal --> TenantSubtype[4. Tenant Subtype Overrides
D+TenantID/S+Subtype]

 TenantSubtype --> TenantDataID[5. Tenant DataID Overrides
D+TenantID/D+NodeID]

 TenantDataID --> End([Final Override Map
Highest Priority])

 style Global fill:#e1f5ff

 style Subtype fill:#fff4e1

 style TenantGlobal fill:#e8f5e9

 style TenantSubtype fill:#f3e5f5

 style TenantDataID fill:#ffebee

 style Start fill:#f5f5f5

 style End fill:#f5f5f5

How OM is Created¶

In order to determine the OM, the content of the Overrides folder is evaluated following this

logic:

globals: Contains the list of scripts stored directly under "Overrides"

type: For each direct subfolder of "Overrides" that has a name starting with "S", an entry

is created. The key is the target subtype (from the folder name), and the value is the list

of scripts in that folder.

tenants: For each direct subfolder of "Overrides" that has a name starting with "D", an

entry is created. The key is the tenant's DataID, and the value is the tenant OM

configuration.

ids: Within tenant folders, subfolders starting with "D" are used to create entries in the

"ids" map for specific node overrides.

1.

2.

3.

4.

5.

•

•

•

•

534 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Example Folder Structure¶

This structure results in:

Actual Override Map (AOM)¶

When a user changes the current space, the OM is evaluated by the framework against the

users' permissions and the actual override map (AOM) associated to the space is determined.

AOM is determined by executing the relevant scripts in OM in the order described above. The

AOM has the following form:

Overrides (ID: 00001)
├── GlobalScript (ID: 00002) - Content Script
├── S144 (ID: 00003) - AnsTemplateFolder
│ └── Document Script (ID: 00004) - Content Script
└── D1234 (ID: 00005) - AnsTemplateFolder (Tenant)
 ├── S0 (ID: 00006) - AnsTemplateFolder
 │ └── Folder Script (ID: 00007) - Content Script
 └── D5678 (ID: 00008) - AnsTemplateFolder
 └── Node Script (ID: 00009) - Content Script

{
"globals": [00002],
"type": {

"144": [00004]
},
"tenants": {

"1234": {
"globals": [],
"type": {

"0": [00007]
},
"ids": {

"5678": [00009]
}

}
}

}

AOM = [
"S144": [// (1) Commands/columns for subtype 144

commands: ["comm_one", "comm_two", ...], // (2) List of command keys
columns: [// (3) Optional columns

col_name: "col value", // value can be HTML
...

]
],
"D1234": [// (4) Commands/columns for specific node

commands: ["comm_one", "comm_two", ...],
columns: [

col_name: "col value",
...

]
]

]

535 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Where: - (1) represents commands and columns to be associated to all nodes having the

identified subtype - (3) can be omitted if no custom columns are needed - (4) represents

commands and columns to be associated to a specific node (identified by its id) - (4) takes

precedence over (1)

Override Map Creation Timeline¶

Initial System Startup¶

First User Access: When any user first accesses a SmartUI application, the system begins

the override definition loading process

Definition Loading: All Column, Command/Action, and Panel definitions are loaded from

the Content Script volume

User-Specific Caching: If amcs.amsui.volumeCache is enabled, definitions are cached in

memcached per user

Per-Space Navigation¶

Lazy Initialization: When users navigate to different OTCS folders/spaces, the Actual

Override Map is built on-demand

Permission Evaluation: The system evaluates user permissions against Content Script

volume objects

Dynamic Computation: AOM is computed based on current space context and user rights

Script Execution: Override scripts execute in the documented order hierarchy

Volume Cache Configuration¶

Parameter: amcs.amsui.volumeCache¶

Type: Boolean

Default: false

Scope: Global system setting

Performance Impact:

Enabled: Significant performance improvement for override-heavy environments

Disabled: Real-time computation on every space navigation (slower but always current)

Cache Storage Architecture¶

The system uses a sophisticated two-tier caching strategy:

Memcached Layer: Stores user-specific override definitions based on Content Script

volume permissions

Java Memory Layer: Stores the Override Map (OM) structure

1.

2.

3.

1.

2.

3.

4.

•

•

•

•

•

•

1.

2.

536 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Dynamic Computation: Actual Override Map (AOM) generation on-demand during space

navigation

Cache Management¶

Programmatic Clearing: Use amsui.clearCache() API

Automatic Invalidation: Cache invalidates on Content Script volume changes

User Isolation: Each user maintains separate cached definitions

Smart View Custom Menus¶

Setting up a customization to the Smart View menu requires at least two components:

A menu command definition script (in CSSmartView/Commands)

An override configuration script (in CSSmartView/Overrides)

Menu Command Definition¶

Commands are defined in Content Scripts stored in the CSSmartView/Commands folder. These scripts

return command definitions that specify how the command should appear and behave.

Basic Command Definition¶

3.

•

•

•

Direct Access Restrictions

Override Maps (OM) and Actual Override Maps (AOM) are internal system components and should not be accessed

directly through custom code. Use the supported approaches: Custom Override Scripts, Override Configuration,

Cache Management, and System Monitoring.

1.

2.

return [
[

am: [
exec: [

mode: "script",
script: 2644067, // Content Script ID to execute
params: [],
refresh_on_success: true,
on_success_action: "",
newtab: false,
url: ""

]
],
baricon: null,
icon: null,
name: "My Custom Command",
command_key: "my_custom_command",
signature: "my_custom_command",
scope: "multiple" // single, multiple, or container

]
]

537 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Command with Confirmation¶

Command with Panel¶

Grouped Commands¶

Commands can be grouped together in a flyout menu:

return [
[

am: [
confirmation: [

required: true,
title: "Confirm Action",
message: "Are you sure you want to proceed?"

],
exec: [

mode: "script",
script: 2644067,
params: []

]
],
name: "Delete Item",
command_key: "delete_item",
signature: "delete_item",
scope: "single"

]
]

return [
[

am: [
panel: [

width: 40,
cssClass: "my-panel-class",
slides: [

[
title: "My Panel",
script: 2644068 // Content Script for panel content

]
]

],
exec: [

mode: "panel"
]

],
name: "Open Panel",
command_key: "open_panel",
signature: "open_panel",
scope: "single"

]
]

return [
[

// Parent command (flyout)
am: [

exec: [
mode: "group"

538 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Override Configuration¶

Override configuration scripts determine when and where commands should be displayed.

These scripts are stored in the CSSmartView/Overrides folder structure.

Override Map Format¶

For more control, return a map structure:

This approach allows multiple override behaviors to be defined in one script.

Dynamic Override Script¶

Override scripts receive a list of nodes in the execution context:

]
],
scope: "multiple",
group: "info",
flyout: "am_group",
name: "Module Suite Actions",
command_key: "am_group",
signature: "am_group"

],
[

// Child command
am: [

exec: [
mode: "script",
script: 2644067,
params: []

]
],
name: "Content Script Action",
command_key: "am_content_script",
signature: "am_content_script",
scope: "multiple",
flyout: "am_group" // References parent command

]
]

// Script in CSSmartView/Overrides
return [

"D12345": [
commands: ["x_selectDocument"]

],
"D67890": [

commands: ["x_selectDocument"]
]

]

// Script receives 'nodes' variable in context
overrides = [:]

nodes.findAll { it.subtype == 144 }.each { node ->
overrides["D${node.dataid}"] = [

commands: ["training_override"]

539 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Smart View Custom MetaPanels¶

Setting up a customization to add custom metadata panels requires creating a metadata panel

definition script in the CSSmartView/MetaPanels folder. These panels can be displayed alongside an

object's standard metadata panels, enabling enhanced or context-specific metadata display.

MetaPanel Definition Script¶

MetaPanel definition scripts return command definitions that specify how the metadata panel

should appear and behave. The scripts can return a list of command definitions.

Basic MetaPanel Definition¶

]
}

return overrides

// In CSSmartView/MetaPanels
// Commands scripts can return a list
return [

[
am: [

exec: [
mode: "group" // (1) This command will act as our flyout

]
],
scope: "multiple",
group: "info",
flyout: "am_group", // (2) This command will act as our flyout
baricon: null,

540 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

icon: null,
name: "Try Module Suite",
command_key: "am_group",
signature: "am_group"

],
[

am: [
confirmation: [

required: false,
title: "",
message: ""

],
panel: [

width: 40,
cssClass: "",
slides: [

[
title: "",
script: null

]
]

],
key: [

code: 83,
message: "",
nogui: false

],
exec: [

mode: "script",
script: 2644067,
params: [],
refresh_on_success: true,
on_success_action: "",
newtab: false,
url: ""

]
],
baricon: null,
icon: null,
name: "Content Script",
command_key: "am_content_script",
signature: "am_content_script",
scope: "multiple",
flyout: "am_group",
selfBlockOnly: false

]
]

541 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Smart View Custom Columns¶

Setting up a customization to add custom columns requires at least two components:

A menu column definition script (in CSSmartView/Columns)

An override configuration script (in CSSmartView/Overrides)

Column Definition Script¶

The column definition Content Script is responsible for filtering the list of columns available in

a certain browse view, potentially removing available columns or injecting new ones.

The script is expected to return an object available within the context ("nodesColumns"), after

processing it.

Basic Column Definition¶

1.

2.

// In CSSmartView/Columns
// Execution context includes:
// - nodesColumns: map associating node ids with their column definitions
// - nodes: list of node records
// - req: the original REST request record
// - envelope: the current REST API call envelope

def sampleColumn = [
type: 43200, // Should be 43200 for custom columns
data_type: 43200, // Should be 43200 for custom columns
name: "Status",
sort_key: "type",
key: "sample_column" // Unique identifier, must match override script

]

542 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Column Definition Properties¶
Variable Description

type Should be 43200 for custom columns

data_type Should be 43200 for custom columns

name The plaintext value for the column header

sort_key The identifier of the node value to be used for sorting this column

key
The unique identifier for this column. Must match the key provided in the

override script

Column Override Definition¶

The override definition is shared with the custom menu overrides. In this case, we use the

"columns" section:

nodesColumns[3156087]?.add(sampleColumn)

// Must return the revised nodeColumns
return nodesColumns

543 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Smart View Custom Actions¶

Setting up a customization to add custom actions requires at least two components:

A menu command definition script (same as for menus, in CSSmartView/Commands)

An action configuration script (in CSSmartView/Actions)

// In CSSmartView/Overrides
retval = nodes.collect {

[
("D${it.dataid}" as String): [

commands: [],
columns: [

// Columns of type 43200 can be used to inject HTML
sample_column: drawStatusBar(it),
sample_icon_column: drawIcon(it)

]
]

]
}

return retval

// Helper function to generate column HTML
def drawStatusBar = { node ->

def statusList = ['Draft', 'Under Revision', 'Approved', 'Published']
def numSteps = statusList.size()
def currStep = new Random().nextInt(statusList.size())
def currStepName = statusList[currStep]

def stepStyle = "height:100%; width:calc(100% / ${numSteps}); float:left; background-color:#F0AD4E; box-sizing:border-box;"
def stepsHtml = ""

(currStep + 1).times {
stepsHtml += """"""

}

return """
 <div style="text-align:center; font-size:.75em">${currStepName}</div>
 <div style="margin:3px 0; padding:0; height:5px; background-color:#eee;">${stepsHtml}</div>
 """
}

1.

2.

544 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Registering a Smart View Action¶

Registering an action differs from the registration of a standard menu entry as the

customization is processed in a different, separate phase.

In this case, we use the CSSmartView > Actions folder. Here we create a Content Script that acts

as a filter, whose aim is to process and manipulate an existing object called "actions" which is

automatically injected in the context.

Actions Object Structure¶

The actions object is a mapping containing all the actions registered so far, for each object

associated to the request, indexed by the object's DataID.

Example structure:

Action Registration Script¶

actions = [
"656609": [

data: [
"Classify": [

content_type: "application/x-www-form-urlencoded",
method: "POST",
name: "Add RM Classification",
href: "/api/v2/nodes/2891606/rmclassifications",
body: "{\"displayPrompt\":false,\"enabled\":false}",
form_href: ""

],
"zipanddownload": [

content_type: "",
method: "POST",
name: "Zip and Download",
href: "/api/v2/zipanddownload",
body: "",
form_href: ""

]
],
map: [

default_action: "open"
],
order: [

"Classify",
"zipanddownload"

]
]

]

// In CSSmartView/Actions
// Execution context includes:
// - actions: map associating node ids with available actions
// - req: the current HTTP request
// - envelope: the REST API request's envelope

actions.each { action ->
node = docman.getNodeFast(action.key as long)
if (node.subtype == 144 && node.parentID == 973895) {

545 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Command Execution and Return Values¶

Content Script scripts executed as commands can return execution information to the caller.

Success Message¶

Error Message¶

// Add custom action based on business rule
action.value.data["training_action"] = [

body: "training_action"
]
action.value.order.add("training_action")

}
}

// After script execution completes successfully
json([

message: [
type: 'success',
text: "Operation completed successfully",
details: "The document has been processed and saved to the repository."

]
])

// After script execution encounters an error
json([

message: [

546 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Best Practices¶

Override Scripts¶

Keep scripts focused: Each script should handle a specific override type

Use meaningful names: Name scripts descriptively

Document business logic: Add comments explaining override conditions

Test thoroughly: Test overrides in different contexts and with different user permissions

Performance¶

Enable caching: Use amcs.amsui.volumeCache in production

Optimize queries: Minimize database queries in override scripts

Cache expensive operations: Cache results of expensive computations

Limit scope: Only apply overrides where necessary

Security¶

Validate permissions: Always check user permissions before applying overrides

Sanitize output: Escape HTML in column values

Validate input: Validate any parameters passed to commands

Audit actions: Log important actions for audit purposes

type: 'error',
text: "Operation failed",
details: "Unable to process the document. Please try again."

]
])

•

•

•

•

•

•

•

•

•

•

•

•

547 Smart View Overrides¶

Copyright © 2013-2025 AnswerModules Sagl

Next Steps¶

Learn about Tile Communication for inter-tile interactions

Explore WebForms Integration for embedding forms

Review Smart Pages Object for creating custom pages

Communication Between Different Tiles¶

Overview¶

Smart Pages tiles can communicate with each other and with other Smart View components

through a message bus system. This enables dynamic, interactive interfaces where tiles can

react to user actions and update their content accordingly.

Radio Channel Communication¶

All tile communication in Smart Pages uses the Radio channel messaging system. The primary

channel used is ampagenotify, which acts as a centralized message bus for all tile interactions.

Initializing the Radio Channel¶

Before tiles can communicate, they need to initialize the Radio channel:

•

•

•

Tile Communication Overview

Placeholder for Image

Add a diagram showing tile communication architecture

csui.onReady2([
'csui/lib/jquery',
'csui/lib/underscore',
'csui/lib/radio'

], function(jQ, _, Radio) {
// Get the page message bus
var amChannel = Radio.channel('ampagenotify');

// Now tiles can communicate through amChannel
});

548 Communication Between Different Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

../tile_communication/
../webforms_integration/
smartpages_object.md

Communication Patterns¶

Pattern 1: Command-Based Communication¶

Tiles can trigger commands that other tiles listen for. This is the most common pattern for tile

communication.

Sending Commands¶

Receiving Commands¶

Pattern 2: Request-Response Communication¶

Tiles can request data from other tiles using the request pattern.

Making Requests¶

// In Tile A's data source widgetConfig
html: """
 <script>
 csui.onReady2(['csui/lib/radio'], function(Radio) {
 var amChannel = Radio.channel('ampagenotify');

 // Trigger a command
 amChannel.trigger("updateChart", [
 {name: "filter", value: "active"}
]);
 });
 </script>
"""

// In Tile B's data source widgetConfig
html: """
 <script>
 csui.onReady2(['csui/lib/radio'], function(Radio) {
 var amChannel = Radio.channel('ampagenotify');

 // Listen for command
 amChannel.on("updateChart", function(params) {
 // Process params and update tile
 console.log("Received updateChart command", params);
 // Reload tile data or update UI
 });
 });
 </script>
"""

// Request data from another tile
var chart = amChannel.request("ampages:myChart");
if (chart) {

// Use the chart object

549 Communication Between Different Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Providing Data¶

Pattern 3: Event Broadcasting¶

Tiles can broadcast events that multiple tiles can listen to.

Broadcasting Events¶

Listening to Events¶

Common Communication Scenarios¶

Scenario 1: Chart and Filter Tiles¶

A filter tile updates a chart tile when filters change.

Filter Tile (Sender)¶

chart.updateData(newData);
}

// Register data provider
amChannel.reply("ampages:myChart", function() {

return myChartInstance;
});

// Broadcast an event
amChannel.trigger("tile:dataUpdated", {

tileId: "chart_1",
data: newData

});

// Listen for events
amChannel.on("tile:dataUpdated", function(eventData) {

if (eventData.tileId === "chart_1") {
// React to chart update
updateRelatedTile(eventData.data);

}
});

// In filter tile's data source
if(params.widgetConfig){

json(widgetConfig: [
html: """

 <script>
 csui.onReady2(['csui/lib/jquery', 'csui/lib/radio'],
 function($, Radio) {

550 Communication Between Different Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Chart Tile (Receiver)¶

Scenario 2: Links Tile and Node Table¶

A links tile triggers navigation or actions that update a node table.

Links Tile (Sender)¶

 var amChannel = Radio.channel('ampagenotify');

 $('#filterInput').on('change', function() {
 var filterValue = $(this).val();
 amChannel.trigger("updateChart", [
 {name: "filter", value: filterValue}
]);
 });
 });
 </script>
 <input id="filterInput" type="text" placeholder="Filter...">
 """

])
}

// In chart tile's data source
if(params.widgetConfig){

json(widgetConfig: [
reloadCommands: ["updateChart"], // Tile will reload when this command is triggered
html: """

 <script>
 csui.onReady2(['csui/lib/radio'], function(Radio) {
 var amChannel = Radio.channel('ampagenotify');

 amChannel.on("updateChart", function(params) {
 // The tile will automatically reload
 // because "updateChart" is in reloadCommands
 });
 });
 </script>
 """

])
} else {

// Generate chart data based on params.filter
def filter = params.filter ?: "all"
// ... generate chart data ...
json([/* chart data */])

}

Chart and Filter Communication

Placeholder for Image

Add a screenshot showing a filter tile updating a chart tile

// In links tile's data source
json([

data: [

551 Communication Between Different Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Node Table Tile (Receiver)¶

Scenario 3: Tree Tile and Content Display¶

A tree tile triggers content display in another tile when nodes are selected.

Tree Tile (Sender)¶

The tree tile configuration should include:

links: [
[

name: "Show Active Items",
url: "#",
action: "notify",
command: "updateNodeTable",
params: "active"

],
[

name: "Show All Items",
url: "#",
action: "notify",
command: "updateNodeTable",
params: "all"

]
]

]
])

// In node table tile's data source
if(params.widgetConfig){

json([
widgetConfig: [

reloadCommands: ["updateNodeTable"]
]

])
} else {

// Generate node list based on params.filter
def filter = params.tile ?: "all"
// ... query nodes based on filter ...
json([/* node data */])

}

// In tree tile's data source
data = [

[
id: 2000,
text: "Documents",
action: "notify",
params: "2000"

]
]

json(data)

552 Communication Between Different Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Content Tile (Receiver)¶

Scenario 4: Smart Page Actions¶

Tiles can trigger Smart Page-level actions that affect multiple tiles.

Triggering Smart Page Actions¶

if(params.widgetConfig){
json([

widgetConfig: [
html: """

 <script>
 csui.onReady2(['csui/lib/radio'], function(Radio) {
 var amChannel = Radio.channel('ampagenotify');

 // Tree will trigger "notify" action when node is clicked
 // This will trigger the command specified in params
 });
 </script>
 """

]
])

}

// In content display tile's data source
if(params.widgetConfig){

json([
widgetConfig: [

reloadCommands: ["showNodeContent"]
]

])
} else {

// Display content for the selected node
def nodeId = params.tile ?: 2000
def node = docman.getNodeFast(nodeId as long)
// ... generate content display ...
json([/* content data */])

}

// In any tile's data source
json([

data: [
links: [

[
name: "Refresh All",
url: "#",
command: "smartPage", // Notify Smart Page
action: "refreshAll", // Action name
params: "" // Action parameters

]
]

]
])

553 Communication Between Different Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Smart Page Action Handler¶

Reload Commands¶

The reloadCommands configuration option allows tiles to automatically reload when specific

commands are triggered.

Configuration¶

When any of these commands are triggered via amChannel.trigger(), the tile will automatically

reload its data source.

Benefits¶

Automatic synchronization: Tiles stay in sync without manual reload code

Simplified code: No need to manually call reload functions

Consistent behavior: All tiles use the same reload mechanism

// In Smart Page template or tile widgetConfig
html: """
 <script>
 csui.onReady2(['csui/lib/radio'], function(Radio) {
 var amChannel = Radio.channel('ampagenotify');

 amChannel.on("smartPage_action", function(action, param) {
 if (action === "refreshAll") {
 // Trigger reload for multiple tiles
 amChannel.trigger("updateChart", []);
 amChannel.trigger("updateNodeTable", []);
 amChannel.trigger("updateLinks", []);
 }
 });
 });
 </script>
"""

if(params.widgetConfig){
json([

widgetConfig: [
reloadCommands: [

"updateChart",
"refreshData",
"filterChanged"

]
]

])
}

•

•

•

554 Communication Between Different Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Best Practices¶

Command Naming¶

Use descriptive names: updateChart is better than cmd1

Follow conventions: Use camelCase for command names

Namespace when needed: Use prefixes like tile:, page:, chart: to avoid conflicts

Error Handling¶

Performance¶

Debounce rapid updates: Use debouncing for frequently triggered commands

Batch updates: Combine multiple updates into a single command when possible

Clean up listeners: Remove event listeners when tiles are destroyed

Debugging¶

Advanced Patterns¶

Pattern: Observer Pattern¶

Multiple tiles observe a single data source tile:

•

•

•

amChannel.on("updateChart", function(params) {
try {

// Process command
} catch (error) {

console.error("Error processing updateChart:", error);
// Show user-friendly error message

}
});

•

•

•

// Enable debug logging
amChannel.on("all", function(eventName, ...args) {

console.log("Radio event:", eventName, args);
});

// Data source tile broadcasts updates
amChannel.trigger("dataSource:updated", {

data: newData,
timestamp: Date.now()

});

// Multiple observer tiles listen
amChannel.on("dataSource:updated", function(eventData) {

555 Communication Between Different Tiles¶

Copyright © 2013-2025 AnswerModules Sagl

Pattern: Mediator Pattern¶

A central mediator tile coordinates communication between multiple tiles:

Next Steps¶

Review Smart Pages Commands for detailed command reference

Explore WebForms Integration for form-tile communication

Learn about Smart View Overrides for custom menu and column interactions

commands javascript radio channel smartui

SmartPages commands

Integrate SmartUI Commands in your workflow¶

Introduction¶

SmartUI commands provide a powerful way to interact with the SmartUI framework through the

Radio channel messaging system. These commands enable seamless communication between

different components in SmartUI applications, allowing developers to create dynamic,

interactive user interfaces without tight coupling between components.

Module Suite plays a crucial role in seamlessly incorporating SmartUI commands into your

enterprise content management ecosystem. By leveraging the Radio channel messaging

system, Module Suite empowers you to:

Decouple components: Enable loose coupling between UI components through event-

driven communication, making applications more maintainable and extensible.

updateTile(eventData.data);
});

// Mediator tile
amChannel.on("tileA:action", function(data) {

// Process and forward to tile B
amChannel.trigger("tileB:update", processedData);

});

amChannel.on("tileB:response", function(data) {
// Process and forward to tile C
amChannel.trigger("tileC:update", processedData);

});

•

•

•

1.

556 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

../commands/
../webforms_integration/
../overrides/

Enhance user experience: Display toolbars, viewers, side panels, and other UI elements

dynamically based on user interactions and application state.

Simplify integration: Use a consistent command pattern across all SmartUI interactions,

reducing complexity and learning curve.

Enable dynamic content: Load Smart Pages, Intelligent Viewing, and other content on-

demand without full page refreshes.

Improve responsiveness: Show loading indicators and messages to provide feedback

during asynchronous operations.

Support flexible layouts: Open side panels, display viewers, and manage multiple UI

components simultaneously with precise control.

By integrating SmartUI commands through Module Suite, organizations can create rich,

interactive user interfaces that enhance productivity, improve user experience, and provide

seamless integration with Extended ECM capabilities.

Architecture and Communication¶

SmartUI commands use the Radio channel messaging system as a message bus for inter-

component communication. This architecture enables decoupled, event-driven interactions

between different parts of SmartUI applications.

Here's an overview of how the communication works:

flowchart TD

 subgraph App["SmartUI Application"]

 Component1[Component 1]

 Component2[Component 2]

 Component3[Component 3]

 Radio[Radio Channel
ampagenotify]

 end

 Handler1[Toolbar Handler]

 Handler2[Viewer Handler]

 Handler3[Panel Handler]

 Handler4[Message Handler]

 Component1 -->|trigger command| Radio

2.

3.

4.

5.

6.

SmartUI Commands Integration Considerations

While SmartUI commands offer significant benefits, it's important to consider factors such as command naming

conventions, parameter validation, and error handling when integrating commands into your applications. Module

Suite provides the necessary tools and patterns to address these considerations effectively.

557 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

 Component2 -->|trigger command| Radio

 Component3 -->|trigger command| Radio

 Radio -->|route command| Handler1

 Radio -->|route command| Handler2

 Radio -->|route command| Handler3

 Radio -->|route command| Handler4

 Handler1 -->|update UI| Component1

 Handler2 -->|update UI| Component2

 Handler3 -->|update UI| Component3

 style App fill:#f9f,stroke:#333,stroke-width:2px

 style Radio fill:#bbf,stroke:#333,stroke-width:2px

 style Handler1 fill:#bfb,stroke:#333,stroke-width:2px

 style Handler2 fill:#bfb,stroke:#333,stroke-width:2px

 style Handler3 fill:#bfb,stroke:#333,stroke-width:2px

 style Handler4 fill:#bfb,stroke:#333,stroke-width:2px

Radio Channel Communication¶

All SmartUI commands are triggered through the ampagenotify Radio channel, which acts as a

centralized message bus. This approach provides:

Decoupled communication: Components don't need direct references to each other

Event-driven architecture: Commands are triggered as events, enabling reactive

programming patterns

Consistent interface: All commands follow the same pattern, making them easy to learn

and use

Extensibility: New commands can be added without modifying existing components

Command Pattern¶

All SmartUI commands follow this consistent pattern:

Where: - smartui:command:name is the command identifier - parameters is an object containing the

command-specific configuration

Typical Communication Sequence¶

Below is a diagram illustrating a typical communication sequence when using SmartUI

commands:

•

•

•

•

amChannel.trigger("smartui:command:name", parameters);

558 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

sequenceDiagram

 participant User

 participant Component

 participant Radio as Radio Channel

 participant Handler

 participant UI

 User->>Component: User interaction

 Component->>Radio: trigger("smartui:command:name", params)

 Radio->>Handler: Route command to handler

 Handler->>Handler: Process command

 Handler->>UI: Update UI elements

 UI->>User: Display result

This pattern allows for clean separation of concerns, where components trigger commands

without needing to know the implementation details of how those commands are handled.

Components of the SmartUI Commands

Integration¶

Module Suite provides a comprehensive set of command handlers to enable seamless

integration with SmartUI components. These handlers work together to offer a robust and

flexible command-driven experience within the Extended ECM environment.

Command Handlers¶

SmartUI commands are processed by dedicated handlers that manage different aspects of the

UI:

Toolbar Handler: Manages action toolbars for nodes

Viewer Handler: Handles Intelligent Viewing (IV) display

Smart Page Handler: Manages Smart Page rendering

Panel Handler: Controls side panel display and navigation

Loader Handler: Manages loading indicators

Message Handler: Displays global notifications

Radio Channel Initialization

Before using any SmartUI commands, you need to initialize the Radio channel:

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');
// Now you can use amChannel.trigger() to send commands

});

•

•

•

•

•

•

559 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

Search Handler: Handles search interface navigation

graph TD

 A[SmartUI Commands] --> B[Command Handlers]

 B --> C[Toolbar Handler]

 B --> D[Viewer Handler]

 B --> E[Smart Page Handler]

 B --> F[Panel Handler]

 B --> G[Loader Handler]

 B --> H[Message Handler]

 B --> I[Search Handler]

 style A fill:#f9f,stroke:#333,stroke-width:2px

 style B fill:#bbf,stroke:#333,stroke-width:2px

Integration Use Cases¶

Module Suite offers various capabilities for integrating SmartUI commands into your Extended

ECM environment. Let's explore common use cases and how to implement them.

Displaying Action Toolbars¶

Action toolbars allow users to interact with content nodes through a contextual menu of

available actions. This functionality is valuable for implementing:

Quick access to common actions (open, download, delete, etc.)

Contextual action menus based on node type and permissions

Customizable command sets for different use cases

Inline action bars for table rows or list items

Example: Basic Toolbar Display¶

Here's a simple example of how to display an action toolbar:

Basic UsageAdvanced ConfigurationComments

•

•

•

•

•

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show toolbar for node 2000 with default container
amChannel.trigger("smartui:show:toolbar", {

id: 2000
// el is optional, defaults to ".actions_2000"

});
});

560 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

The first example demonstrates the simplest usage, where only the id parameter is required.

The toolbar will be displayed in the default container .actions_{id}.

The second example shows a more advanced configuration with: - Custom container selector -

Specific commands to display - Blacklisted commands to exclude - Custom styling and

behavior options - Error handling configuration

Displaying Document Viewers¶

Intelligent Viewing (IV) allows users to view documents directly within the application without

leaving the current context. This functionality is valuable for implementing:

Inline document preview

Document comparison (multiple versions)

Seamless document viewing experience

Integration with Smart Pages for empty states

Example: Document Viewer Display¶

Single DocumentComparison ViewWith Smart Page Empty ViewComments

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show toolbar with custom container and specific commands
amChannel.trigger("smartui:show:toolbar", {

id: 2000,
el: ".am-content-container",
separateCommands: true,
commands: ["open", "download", "delete"],
blacklistedCommands: ["share"],
delayRestCommands: false,
text: {

dropDownText: "More actions"
},
dropDownIconName: "csui_action_more32",
addGroupSeparators: false,
inlineBarStyle: "csui-table-actionbar-bubble",
forceInlineBarOnClick: false,
showInlineBarOnHover: true,
error: {

type: "error",
text: "Unable to load toolbar",
details: ""

}
});

});

Command Filtering

Use commands to specify exactly which actions to show, or use blacklistedCommands to exclude specific actions

from the default command set.

•

•

•

•

561 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show Intelligent Viewing for a single node
amChannel.trigger("smartui:show:iv", {

id: "docpreview_1",
target: ".am-content-container",
node: 2000,
css: {

height: "100%",
position: "relative"

},
html: "",
error: {

type: "error",
text: "Unable to load viewer",
details: ""

}
});

});

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show comparison view for multiple versions
amChannel.trigger("smartui:show:iv", {

id: "docpreview_compare",
target: ".am-content-container",
node: [

{id: 2000, version_number: 1},
{id: 2000, version_number: 2}

],
mode: "compare",
css: {

height: "100%",
position: "relative"

},
error: {

type: "error",
text: "Unable to load viewer",
details: ""

}
});

});

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show viewer with Smart Page as empty view
amChannel.trigger("smartui:show:iv", {

id: "docpreview_1",
target: ".am-content-container",
node: 2000,
source: {

source: 123,
parameters: []

},
css: {

height: "100%",
position: "relative"

},
error: {

type: "error",
text: "Unable to load viewer",

562 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

The first example shows the basic usage for displaying a single document. The viewer will show

the document and when closed, will display the empty HTML template.

The second example demonstrates the comparison view mode, which is useful for comparing

different versions of the same document. When multiple nodes with the same ID are provided,

the system automatically uses version_number as the identifier.

The third example shows how to use a Smart Page as the empty view. When the viewer is

closed, instead of showing HTML, it will load and display the Smart Page specified in the source

parameter.

Displaying Smart Pages¶

Smart Pages can be loaded dynamically into containers, enabling dynamic content rendering

based on server-side processing. This functionality is valuable for implementing:

Dynamic content loading without page refresh

Context-aware content display

Reusable Smart Page components

Flexible content rendering

Example: Loading Smart Pages¶

Using dataSourceUsing HTML TemplateComments

details: ""
}

});
});

Empty View Options

You can use either html (for static HTML templates) or source (for dynamic Smart Page content) as the empty view.

If neither is provided, the container will be empty when the viewer is closed.

Node Parameter Flexibility

The node parameter accepts: - A single number: node: 2000 - An array of numbers: node: [2000, 2001, 2002] - An

array of objects: node: [{id: 2000, version_number: 1}, {id: 2000, version_number: 2}]

•

•

•

•

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show Smart Page with ID 2467915
amChannel.trigger("smartui:show:smartpage", {

id: "smartpage_1",
target: ".am-content-container",
css: {

height: "100%"

563 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

The first example demonstrates loading a Smart Page script dynamically. The dataSource

parameter specifies which Smart Page script to execute and what parameters to pass to it. This

is useful when you want to display dynamic content that depends on server-side processing.

The second example shows how to display static HTML content directly. This is useful for

simple content that doesn't require server-side processing or when you want to display custom

HTML templates.

Displaying Side Panels¶

Side panels provide a slide-in interface for displaying additional content without navigating

away from the main view. This functionality is valuable for implementing:

Contextual information panels

Search and filter interfaces

Multi-step workflows

Document viewing in side panels

},
dataSource: {

source: 2467915,
parameters: [

{name: "target_folder", value: "2000"}
]

},
error: {

type: "error",
text: "Unable to load smart page",
details: ""

}
});

});

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show custom HTML content
amChannel.trigger("smartui:show:smartpage", {

id: "custom_html_1",
target: ".am-content-container",
css: {

height: "100%"
},
html: "<div><h1>Custom Content</h1><p>This is custom HTML content.</p></div>"

});
});

Mutually Exclusive Parameters

The dataSource and html parameters are mutually exclusive. You must provide either one or the other, but not

both.

•

•

•

•

564 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

Example: Side Panel Display¶

Basic Side PanelMultiple SlidesComments

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show side panel with Smart Page
amChannel.trigger("smartui:show:sidepanel", {

id: "myCustomPanelRight", // Remember this ID to close the panel later
panel: {

width: 40,
cssClass: "am_panel_class",
layout: {

header: true,
footer: true,
mask: false,
resize: true

},
slides: [{

title: "Search",
subTitle: "",
dataSource: {

source: 123,
parameters: [

{name: "am_ActionParams", value: "search"}
]

}
}]

}
});

});

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show side panel with multiple slides
amChannel.trigger("smartui:show:sidepanel", {

id: "multiSlidePanel",
panel: {

width: 50,
layout: {

header: true,
footer: true,
resize: true

},
slides: [

{
title: "Search",
subTitle: "Find documents",
dataSource: {

source: 123,
parameters: [{name: "am_ActionParams", value: "search"}]

}
},
{

title: "Filters",
subTitle: "Apply filters",
dataSource: {

source: 456,
parameters: [{name: "am_ActionParams", value: "filters"}]

}
}

565 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

The first example shows a basic side panel with a single slide. The panel will slide in from the

right side of the screen, occupying 40% of the viewport width.

The second example demonstrates a panel with multiple slides. Users can navigate between

slides using the panel's navigation controls. Each slide can have its own Smart Page content.

Displaying Loading Indicators¶

Loading indicators provide visual feedback during asynchronous operations, improving user

experience by indicating that the system is processing a request.

Example: Loading Indicators¶

Manual LoaderAuto-hide Loader with AJAXComments

]
}

});
});

Panel Width

The width parameter is specified as a percentage of the viewport width (vw). Common values are 30, 40, 50, or 100

for full-width panels.

Command Key

The id parameter is crucial as it serves as the command_key for closing the panel later. Make sure to use a unique

identifier.

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show loader with custom label (must be manually hidden)
amChannel.trigger("smartui:loader", {

xhr: null,
options: {

label: "Loading documents..."
}

});

// Hide loader manually after operation completes
setTimeout(function() {

// Use smartui:hide:loader if implemented
// Or remove the loader element from DOM

}, 5000);
});

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show loader tied to an AJAX request (auto-hides on completion)

566 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

The first example shows a manual loader that must be explicitly hidden. This is useful when

you need to control exactly when the loader disappears, such as after multiple asynchronous

operations complete.

The second example demonstrates an auto-hiding loader. By providing a jQuery XHR object, the

loader will automatically hide when the AJAX request completes, whether it succeeds or fails.

This is the recommended approach for single AJAX operations.

Displaying Messages¶

Global messages provide user feedback for operations, displaying success, error, warning, or

informational notifications.

Example: Global Messages¶

Success and Error MessagesWarning and Info MessagesComments

var xhr = $.ajax({
url: "/api/data",
method: "GET"

});

amChannel.trigger("smartui:loader", {
xhr: xhr,
options: {

label: "Fetching data..."
}

});

// Loader will automatically hide when AJAX request completes
// (either success or error)

});

Auto-hide Behavior

When you provide an xhr object, the loader uses the jQuery promise system to automatically hide when the

request completes. This eliminates the need for manual cleanup code.

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show success message
amChannel.trigger("smartui:message", {

type: "success",
text: "Document saved successfully",
details: "The document has been saved to the repository",
options: null

});

// Show error message
amChannel.trigger("smartui:message", {

type: "error",
text: "Operation failed",
details: "Unable to save the document. Please try again.",
options: null

567 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

Messages are displayed globally and automatically dismiss after a timeout period. The type

parameter determines the visual style and icon of the message:

success: Green message with checkmark icon

error: Red message with error icon

warning: Yellow/orange message with warning icon

info: Blue message with information icon

The details parameter provides additional context that can be expanded by the user.

Closing Panels¶

Panels can be closed programmatically using specific close commands that match the panel's

command key.

Example: Closing Panels¶

Closing Side PanelClosing IV Side PanelComments

});
});

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Show warning message
amChannel.trigger("smartui:message", {

type: "warning",
text: "Warning",
details: "This action cannot be undone",
options: null

});

// Show info message
amChannel.trigger("smartui:message", {

type: "info",
text: "Information",
details: "Your session will expire in 5 minutes",
options: null

});
});

•

•

•

•

Message Visibility

Messages are displayed in a non-intrusive manner and automatically disappear after a few seconds. Users can

manually dismiss them if needed.

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Open a panel
amChannel.trigger("smartui:show:sidepanel", {

568 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

The first example shows how to close a side panel opened with smartui:show:sidepanel. The

command pattern is smartui:dialog:{command_key}:hide, where {command_key} matches the id used

when opening the panel.

The second example demonstrates closing an IV side panel opened with

smartui:show:iv:sidepanel. The command pattern is smartui:hide:{command_key}:iv:sidepanel.

Using Commands from Tiles Widgets¶

SmartUI commands can also be triggered from Tiles Widgets in Smart Pages, enabling

command-driven interactions directly from tile components.

id: "myCustomPanelRight", // This is the command_key
panel: {

width: 40,
layout: { header: true, footer: true },
slides: [{

title: "Search",
dataSource: {

source: 123,
parameters: []

}
}]

}
});

// Close the panel using the command_key
amChannel.trigger("smartui:dialog:myCustomPanelRight:hide");

});

csui.onReady2(["csui/lib/radio"], function(Radio){
var amChannel = Radio.channel('ampagenotify');

// Open IV side panel
amChannel.trigger("smartui:show:iv:sidepanel", {

id: "docpreview_panel", // This is the command_key
node: 2000,
panel: {

width: 100,
layout: {

header: false,
footer: false,
resize: true

}
}

});

// Close the IV side panel using the command_key
amChannel.trigger("smartui:hide:docpreview_panel:iv:sidepanel");

});

Command Key Matching

The command_key in the hide command must exactly match the id used when opening the panel. If they don't

match, the panel won't close.

569 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

Example: Tile Widget Command¶

This example shows how to configure a tile widget to trigger a SmartUI command when clicked.

The command parameter specifies the command name, action is set to "notify" to use the Radio

channel, and params contains the command parameters as a JSON string.

Best Practices¶

When working with SmartUI commands, consider the following best practices:

Do: - Always use unique id values for each viewer/panel instance - Provide error handlers in

your command parameters - Use the xhr parameter in smartui:loader for automatic loader

dismissal - Use descriptive command_key values (e.g., "searchPanel" instead of "panel1") - Initialize

the Radio channel before using commands - Handle errors gracefully with appropriate error

configurations

Don't: - Don't use the same id for multiple instances - Don't hardcode node IDs - use variables

or parameters - Don't use generic command_key values that might conflict - Don't forget to close

panels when they're no longer needed - Don't ignore error handling - always provide error

configurations

[
size: 6,
styleclass: "",
command: "smartui:show:toolbar", // Custom command name
action: "notify", // Action type
params: JsonOutput.toJson([// Parameters as JSON

id: 2000,
el: ".am-content-container",
separateCommands: true,
commands: ["open", "download", "delete"],
blacklistedCommands: ["share"],
delayRestCommands: false,
text: [

dropDownText: "More actions"
],
dropDownIconName: "csui_action_more32",
addGroupSeparators: false,
inlineBarStyle: "csui-table-actionbar-bubble",
forceInlineBarOnClick: false,
showInlineBarOnHover: true,
error: [

type: "error",
text: "Unable to load toolbar",
details: ""

]
]),
newtab: false,
type: 'blue',
front: [

body: "Show Toolbar",
title: "Show Toolbar"

]
]

570 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

Summary¶

This guide covered all the common SmartUI commands:

smartui:show:toolbar - Display action toolbar

smartui:show:iv - Display Intelligent Viewing in container

smartui:show:smartpage - Display Smart Page in container

smartui:show:sidepanel - Open side panel with Smart Page

smartui:show:iv:sidepanel - Open side panel with Intelligent Viewing

smartui:loader - Show loading indicator

smartui:message - Show global message

smartui:search - Open search interface

smartui:dialog:{command_key}:hide - Close side panel

smartui:hide:{command_key}:iv:sidepanel - Close IV side panel

All commands use the ampagenotify Radio channel for communication and follow consistent

parameter patterns for easy integration into your SmartUI applications.

Command Organization

Organize your commands logically and use consistent naming conventions. This will make your code more

maintainable and easier to debug.

Memory Management

Be mindful of opening multiple panels or viewers simultaneously. Consider closing unused instances to prevent

memory leaks and performance issues.

•

•

•

•

•

•

•

•

•

•

571 SmartPages commands

Copyright © 2013-2025 AnswerModules Sagl

Script Console

Working with Script Console

Execution modes¶

Script Console is a runtime environment that features different execution modes (a shell, a

script interpreter and a lightweight webserver) therefore it's the perfect solution when it comes

to integrate Content Server with external systems. The simplest way to use the Script Console is

to start it as a command line shell.

Script Console can run under both a Windows system and a Unix system, being based on a

modular Java-based architecture. The main scripts for both the supported platforms are

located under the “bin” directory in the runtime installation directory.

Command Line Shell Mode¶

In order to start the Script Console as a command line shell you have to execute the following

command

Without any additional parameter. The system should respond you with the Script Console

prompt (as shown in the figure below)

The prompt indicates the current system and its connection status. In the case of the figure

above the current system has been labeled “TEST” and is currently off-line. New system can be

added using the main configuration file of the Script Console. When newly installed a “TEST”

system configuration is made available for future references.

572 Script Console

Copyright © 2013-2025 AnswerModules Sagl

An online help about the supported commands is available directly from the Script Console

shell. Here below the list of all the commands available out-of-the-box:

loadcs

usage: loadcs -i 00000

Load a Content Script from a file or from Content Server

-e,--encoding <arg> The file encoding (platform default if not

specified)

-f,--file <arg> The local file to load as a script

-h,--help This help message

-i,--id <arg> The ID of the target script on the system

memsrc

usage: memsrc -g "MyGroup"

Search members

-@,--col-email COLUMN: Mail address

-a,--all Use a long listing format for results

-c,--match-contains MATCHING: Contains

-e,--match-endswith MATCHING: Ends with

-f,--col-first-name COLUMN: First name

-g,--filter-groups FILTER: Search only groups

-h,--help This help message

-k,--match-like MATCHING: Sounds like

-l,--col-last-name COLUMN: Last name

-m,--filter-members FILTER: Search any member

573 Working with Script Console

Copyright © 2013-2025 AnswerModules Sagl

-n,--col-name COLUMN: Name

-s,--match-startswith MATCHING: Starts with

-u,--filter-users FILTER: Search only users

ls

usage: ls

List the children of the current node

-h,--help This help message

-l,--long Use a long listing format

rm

usage: rm "Node to delete" "Another node to delete"

Delete one or more nodes in the working node

-h,--help This help message

-i,--id Reference nodes by ID

-p,--parent <arg> Use specified parent in place of working node

-r,--regexp <arg> Match the node names to delete against the

specified regexp

mkdir

usage: mkdir "Folder Name"

Create a new folder

-h,--help This help message

-p,--parent <arg> The parent ID of the new folder

script

574 Working with Script Console

Copyright © 2013-2025 AnswerModules Sagl

usage: script

Switch to scripting mode. In script mode you can write and save your one

script one line at a time

-h,--help This help message

quit | exit

Shutdown and exit

whoami

Information about the current user

loaddocs

usage: loaddocs -d /home/user/myDocs -i -r .*.pdf

Load documents on Content Server

-d,--directory <arg> The local directory to load files from

-h,--help This help message

-i,--interactive Prompt for confirmation for each file

-n,--name Prompt for a new name for each file

-p,--parent <arg> The target directory

-s,--suffix <arg> Match the node names to delete with the

specified suffix

system

usage: system -options

List systems or switch the current system

-a,--add <arg> Add a new system

575 Working with Script Console

Copyright © 2013-2025 AnswerModules Sagl

-c,--current The current system details

-h,--help This help message

-l,--list List all the available systems

-s,--system <arg> Switch to the target system

pwd

Print the current working node

mkuser

usage: mkuser bob -p passwd1 -g "MyGroup, Developers"

Create a new user

-a Public access enabled

-c Can create and update users

-g Can create and update groups

-h,--help This help message

-l Login enabled

-p,--password <arg> The initial password

-s Can administer system

-u Can administer users

interactive

Switch to interactive console mode. In interactive mode you can enter

Content Script commands and execute them directly.

sync

usage: sync

Synchronized console command scripts

576 Working with Script Console

Copyright © 2013-2025 AnswerModules Sagl

-c,--commit Commit modified local scripts to Content Server

-h,--help This help message

-n,--name <arg> The single command to sync

su

usage: su bob

Impersonate a different user

-h,--help This help message

-r,--restore Restore the original logged in user

login

usage: login -options

Login to the specified system

-h,--help This help message

-i,--interactive Force credential prompt (useful id there are

saved credentials)

-k,--save Save the provided credentials (Crypted)

-p,--password <arg> The user's password

-s,--system <arg> The system to connect to

-u,--username <arg> The username

cd

usage: cd -i 2000

Change the current working node

-c,--category Switch to category WS

577 Working with Script Console

Copyright © 2013-2025 AnswerModules Sagl

-e,--enterprise Switch to enterprise WS

-h,--help This help message

-i,--id <arg> The ID of the target node

-n,--nickname <arg> The nickname of the target node

-p,--personal Switch to personal WS

logout

Logout from the current system

loadConfig

usage: loadConfig -v -m Mode

Loads the current system Base Configuration in the Script Console

Configuration

-h,--help Usage Information

-m,--mode <arg> Mode: either BASE, CUSTOM, ALL

-v,--verbose Verbose

Script Interpreter Mode¶

The Script Console can also be executed as a Script interpreter (in order to execute a specific

Content Script) in this case the Console should be executed specifying both the script to be

executed and the system to log in:

Creating new command

New commands can be registered using Content Script to implement them. Script Console comes with a set of

example commands implemented through Content Scripts that a developer can use as a reference to create his

own.

578 Working with Script Console

Copyright © 2013-2025 AnswerModules Sagl

Server Mode¶

A third way the Script Console can be executed is as a lightweight webserver. In this case the

Console should be executed specifying both the port on which to listen for incoming

connection and the system to log in:

Script repositories¶

The Script Console organizes the registered Content Script in isolated repositories. A Script

repository might be dedicated to a specific system (in this case the Scripts stored in this

repository will be loaded and made available only when the user decides to login to that

system), or to a specific extension.

Script Console extensions’ script are made available through all the configured systems.

Script Console features a synchronization command (synch), that can be used, both when the

Console is running as a shell as well as when the console is running as a web server, in order

to synchronize a system repository with the contents of the corresponding CSCommands

Template folder in the Content Script Volume of the current system.

Script Console Internal scheduler configuration

file¶

The Script Console features an internal scheduler configurable through an XML configuration

file (cs-console-schedulerConfiguration.xml) that is stored under the config directory.

The internal scheduler allows to plan and execute tasks to be automatically run in the Script

Console. It is based on Quartz open source library (a well-known Java Scheduler). For further

In order to be able to execute the Script Console with this Mode valid user's credentials should have been

registered using the command:

login –k –i –s SYSTEM

In order to be able to execute the Script Console with this Mode valid user's credentials should have been

registered using the command:

login –k –i –s SYSTEM

579 Working with Script Console

Copyright © 2013-2025 AnswerModules Sagl

information please make reference directly to the Quartz documentation http://quartz-

scheduler.org/ (http://quartz-scheduler.org/) .

Scheduler disabled by default

The internal scheduler is disabled by default. To enable it you can either add the -t flag to your command line:

Or, if the console is executed as a web application, enable it using the context-param in your web.xml file:

./app.sh -p 9090 -s TEST -t true

...
<context-param>

<param-name>app.timer</param-name>
<param-value>true</param-value>

</context-param>
...

580 Working with Script Console

Copyright © 2013-2025 AnswerModules Sagl

http://quartz-scheduler.org/
http://quartz-scheduler.org/
http://quartz-scheduler.org/

Extension for DocuSign

Working with DocuSign

This guide includes the basic set of operations that can be used to setup a document signing

process using the Module Suite Extension for DocuSign.

Creating a signing Envelope¶

One of the core concepts when setting up a DocuSign signing process is the "Envelope", which

represents the overall container for a transaction.

When defining an envelope, you will be able to provide all details of the transaction. The

minimal set of information to provide includes:

the documents to sign

the recipients of the signing request

the message they will receive

See the official DocuSign REST API guide (https://developers.docusign.com/docs/esign-rest-api)

for more details on this topic.

The docusign Content Script service includes methods to programmatically create and send

signing envelopes.

EXAMPLE: Creating a simple envelope¶

•

•

•

def contract = docman.getDocument(123456)
String contractID = contract.ID as String

definition = docusign.getNewEnvelopeDefinition()
.setEmailSubject("XYZ contract for signature")
.setEmailBody("Please sign the contract.")
.addRecipient('signers', 'Homer J. Simpson', 'homer@example.com', 'Manager')
.addSignHereTab("homer@example.com", contractID, "Sign here", 1, 89, 100)
.addDocuments(contract)
.notifyOnEnvelopeCompleted()
.notifyOnEnvelopeDeclined()
.notifyOnEnvelopeVoided()

envelope = docusign.createEnvelopeAndSend(null, definition)

docusign.registerEnvelope(envelope) // This command will register the envelope locally on Content Server, to track its status.

581 Extension for DocuSign

Copyright © 2013-2025 AnswerModules Sagl

https://developers.docusign.com/docs/esign-rest-api
https://developers.docusign.com/docs/esign-rest-api

EXAMPLE: Creating an envelope using a predefined template¶

When creating a new DocuSign envelope, it is possible to provide the envelope configuration in

the form of a Map object. The structure of this map is compatible with the JSON format

DocuSign uses to define Envelopes and Templates. For this reason, for complex envelope

templates, a possible approach is to define the Template within your DocuSign account (using

the visual editor to setup Recipients, Signing Tabs, etc.) and then export it and use it within

your Content Script app.

def documentToSign = docman.getDocument(123456)
def emailMessageSubject = "XYZ contract for signature"
def emailMessageBody = "Please sign the contract."
def documentsToSign = [documentToSign]

def user = users.current

def envDefinition = [

"documents" : documentsToSign,
"emailSubject" : emailMessageSubject,
"emailBlurb" : emailMessageBody,
"signingLocation" : "Online",
"authoritativeCopy" : "false",
"notification": [

"reminders": [
"reminderEnabled" : "false",
"reminderDelay" : "0",
"reminderFrequency" : "0"

],
"expirations": [

"expireEnabled" : "true",
"expireAfter" : "120",
"expireWarn" : "0"

]
],
"enforceSignerVisibility" : "false",
"enableWetSign" : "true",
"allowMarkup" : "false",
"allowReassign" : "false",
"messageLock" : "false",
"recipientsLock" : "false",
"recipients": [

"signers": [user],

/* Alternatively, a map structure can be provided to define recipients (required for external users).

 "signers": [
 [
 "defaultRecipient" : "false",
 "signInEachLocation" : "false",
 "name" : "",
 "email" : "",
 "otuser":[
 "name" : user.displayName,
 "email" : user.email,
 "ID" : user.ID
],
 "accessCode" : "",
 "requireIdLookup" : "false",
 "routingOrder" : "1",
 "note" : "",
 "roleName" : "Responder",

582 Working with DocuSign

Copyright © 2013-2025 AnswerModules Sagl

Embedded recipients¶

Module Suite Extension for DocuSign supports embedded signing for authenticated OTCS users.

When using this pattern, DocuSign delegates the task of identifying the recipients of the

signing request to Content Server. Content Server is allowed to request the generation of a pre-

signed signing url, which can be used by the recipient to sign the documents without having to

authenticate with DocuSign. This approach avoids the context switching of the normal flow,

which would require to open the system-generated email notification and access the DocuSign

signing request from the provided link.

Refer to the official DocuSign REST API Guide - Embedding (https://developers.docusign.com/

docs/esign-rest-api/esign101/concepts/embedding/) for further details on this topic.

When using the embedded signing pattern, recipients should be specified using a CSUser

object.

EXAMPLE: Get a pre-authenticated signing URL for an OTCS internal
user¶

In order to generate a signing URL for an embedded recipient, use the

docusign.getRecipientUrl(...) API.

 "deliveryMethod" : "email",
 "templateLocked" : "false",
 "templateRequired" : "false",
 "inheritEmailNotificationConfiguration": "false",
 "tabs": [
 //"signHereTabs": []
]
]
],
 */

"agents" : [],
"editors" : [],
"intermediaries" : [],
"carbonCopies" : [],
"certifiedDeliveries" : [],
"inPersonSigners" : [],
"recipientCount" : "1"

],

"envelopeIdStamping" : "true",
"autoNavigation" : "true"

]

def envDef = docusign.getNewEnvelopeDefinition(envDefinition)
.notifyOnEnvelopeSent()
.notifyOnRecipientCompleted()
.notifyOnEnvelopeCompleted()

def env = docusign.createEnvelopeAndSend(null, envDef)

envelope = docusign.registerEnvelope(env).envelope // Register this envelope on Content Server. This is the ID of the signing envelope

583 Working with DocuSign

Copyright © 2013-2025 AnswerModules Sagl

https://developers.docusign.com/docs/esign-rest-api/esign101/concepts/embedding/
https://developers.docusign.com/docs/esign-rest-api/esign101/concepts/embedding/
https://developers.docusign.com/docs/esign-rest-api/esign101/concepts/embedding/
https://developers.docusign.com/docs/esign-rest-api/esign101/concepts/embedding/

Envelope status update and signed document

synch back¶

An important action to be performed when a signing workflow is concluded is to retrieve the

signed documents and synchronize them back on your Content Server system. Module Suite

Extension for DocuSign supports automating this task in different ways:

Subscribe to DocuSign push notifications when the envelopes change state (webhook

pattern)

Poll the envelope status and update the local instance when a change is detected

The first approach (webhook) relies on the creation of an endpoint that can be invoked from

DocuSign when changes happen. This pattern can be implemented by setting up the Script

Console DocuSign Extension

The second approach (polling) can be implemented by using the getEnvelopeUpdates(...) API on

the docusign service.

EXAMPLE: Poll DocuSign for Envelope updates and synch back
documents¶

The following script can be scheduled to periodically update all active DocuSign envelopes.

String envelopeID = 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'
String username = 'Admin'

def user = users.getUserByLoginName('Admin')
def env = docusign.getEnvelope(envelopeID)

String profile = null
String recipientUserName = user.name
String recipientEmail = user.email
String recipientClientUserID = user.ID as String
String recipientID = env.recipients.find{ it.clientUserID == recipientClientUserID }.recipientID

String nextUrl = "http://mycontentserver.example.com/otcs/cs.exe"

String signingUrl = docusign.getRecipientUrl(profile, envelopeID, recipientUserName, recipientEmail, recipientID, recipientClientUserID, nextUrl)

redirect signingUrl

•

•

Correct API usage

DocuSign monitors that the usage of the API is compliant with certain guidelines. Specifically, certain APIs cannot

be invoked with a frequency that goes over a certain threshold. When scheduling polling scripts, make sure that

the scheduling frequency complies with the DocuSign guidelines.

NOTE: This limitation can be overcome by using the webhook pattern, as described earlier.

584 Working with DocuSign

Copyright © 2013-2025 AnswerModules Sagl

res = sql.runSQLFast("""SELECT AM_DocuSign.EnvelopeID ENVELOPEID
 from AM_DocuSign where
 AM_DocuSign.EnvelopeStatus not in ('completed', 'Completed')""", false, false, -1).rows.collect{it.ENVELOPEID}
if(res){

docusign.getEnvelopesUpdates(null, res).each{

docusign.updateEnvelope(docusign.getEnvelopeDetails(null, it.envelope))

if(it.envelopeStatus == "completed"){
docusign.getEnvelopeDocuments(null, it.envelope).each{ doc->

doc.each{
if(it.key > 0){

docman.getNodeFast(it.key).addVersion(it.value)
}

}
}

}
}

}

585 Working with DocuSign

Copyright © 2013-2025 AnswerModules Sagl

How to

performances-tips

Content Script: Retrive information

Nodes¶

Getting Content Server nodes¶

All the objects stored on OpentText Content Server are referred as nodes in Content Script.

The base interface representing a node is the CSNode interface. CSNode is the base interface

for most of the Content Script API objects (/working/contentscript/scripts/#content-script-api-

objects).

Almost all the Content Script API Objects inherit from CSNodeImpl which is the base-class

implementing the CSNode interface. As said a node represents an object on Content Server.

Different Objects correspond to different implementation of the CSNode interface (e.g.

Folders(SubType=0) are implemented by CSFolderImpl, Documents(SubType=144) correspond to

CSDocumentImpl).

A CSNode (more generally speaking any Content Script API Object) features:

Properties: this is information specific to the Content Server object (e.g. name, subtype,

size, creation date) and may vary for each CSNode implementation. In order to be

recognized as properties the CSNode fields must be decoretad with the

@ContentScriptAPIField;

API Methdos: these are the APIs used to manipulate and retrieve information associated

with objects;

Features: these are additional features that are not strictly related to objects (their are

not object's properties) but depend on external factors: the way Content Server is

configured (which modules are available, how are they configuration), on object's

configuration, on the user's permissions on the objects, on the context in which the

features are accessed etc.

The Content Script API service you are going to use the most for retriving nodes is the docman

service.

•

•

•

586 How to

Copyright © 2013-2025 AnswerModules Sagl

/working/contentscript/scripts/#content-script-api-objects
/working/contentscript/scripts/#content-script-api-objects
/working/contentscript/scripts/#content-script-api-objects
/working/contentscript/scripts/#content-script-api-objects

docman features several methods that allows you to retrive a node given:

its unique numeric identifier;

its path

its name and the container in which is located;

its nickname;

etc..

The Base API (/working/contentscript/scripts/#api-services) also features a asCSNode method

that serves as a shortcut for the above mentioned use cases.

Getting a node given its ID¶

•

•

•

•

•

Performances-tip: Lazy loading

In order to optimize performances, Content Scripts lazy-loads information from OTCS 'database, which means that

such information is not available until firstly accessed. docman APIs allow you to specify which information you

want to load beforehand. Retriving the minimum amount of information necessary is tipically done using the APIs

ending with the Fast suffix and is to be consider a best practice and might have a significant impact over your's

application performances.

DoDon't

1
2
3
4
5

def node = docman.getNode(123456)

if((node.Invoice.Status as String) == "Paid"){ // The node is loaded with regular method at line (1) since we know we access node's category at line (3)
...

}

1
2
3
4

node = docman.getNode(123545)
if(node.parentID == -1){ //ParentID is a base property for CSNode and since we are only accessing it we should have used docman.getNodeFast(1235) at line (1)

...
}

def node = docman.getNode(2000, //NodeID (on most of the environments 2000 identifies the Enterprise Workspace)
true, //'true' if Reference information shall be loaded
true, //'true' if Reservation information shall be loaeded
true, //'true' if Versions information shall be loaeded
true, //-true- if Current Version shall be loaeded
true, //'true' if Node's features shall be loaeded
true, //'true' if Metadata shall be loaeded
true, //'true' if Permissions information shall be loaeded

)

node = docman.getNode(2000) //this is a shortcut for docman.getNode(2000, true, true, false, false, true, true, true) (loads the node without its versions)

node = docman.getNodeFast(2000) //this is a shortcut for docman.getNode(2000, false, false, false, false, false, false, false) (loads just the base node's information)

node = asCSNode(id:2000) //this is a shortcut for docman.getNode(2000)

node = asCSNode(2000)//this is a shortcut for asCSNode(id:2000)

587 Content Script: Retrive information

Copyright © 2013-2025 AnswerModules Sagl

/working/contentscript/scripts/#api-services
/working/contentscript/scripts/#api-services

Get a list of nodes given their IDs¶

Get Volumes¶

The most common volumes can be easily accessed using a dedicated API featured by the

docman service. If an API is not available a volume can be retrieved using a simple SQL query

based on its subtype. Volumes come in handy when you want to retrieve a node by its path.

Get Nodes By Path¶

docman.getNodesFastWith(
[2000L, 2006L], // List of nodes IDs
["GIF", "promotedCmds", "defaultLink", "size", "tableName"], // List of additional features to retrive
params, //Current request parameters
true, //'true' if Versions information shall be loaeded
true, //'true' if Node's features shall be loaeded
true //'true' if Permissions information shall be loaeded

)

docman.getNodesFast(2000L, 2006L) //this is a shortcut for docman.getNodesFastWith([2000L,2006L], [], [:], false, false, false)

docman.getNodes(2000L, 2006L) //this is a shortcut for docman.getNodesFastWith([2000L, 2006L], [], [:], true, true, true)

docman.getEnterpriseWS() //Enterprise Workspace

docman.getPersonalWS() //Personal Workspace

docman.getCategoryWS() //Category Workspace

docman.getContentScriptVolume() //Content Script Volume

/*
 161 -- Workflow Volume
 198 -- Classification Volume
 211 -- Reports Volume
 233 -- Database Lookups
 236 -- Database Connections
 274 -- Best Bets
 405 -- Recycle Bin
 541 -- Content Server Templates
 862 -- Connected Workspaces
 863 -- Workspace Types
*/

def node = docman.getNodeFast(sql.runSQLFast("""Select "DataID"
 FROM DTree
 Where SubType = 161""", false, false, 0

).rows[0].DataID)

def ews = docman.getEnterpriseWS()

node = docman.getNodeByPath(ews, "Training:Folder")

node = docman.getNodeByPath("Training:Folder") //this is a shortcut for docman.getNodeByPath(docman.getEnterpriseWS(), "Training:Folder")

node = asCSNode(path:"Training:Folder")//this is a shortcut for docman.getNodeByPath("Training:Folder")

588 Content Script: Retrive information

Copyright © 2013-2025 AnswerModules Sagl

Users and Groups¶

Getting Content Server Users and Groups¶

Content Server Users and Groups are managed by the users service in the Content Script. users

service operates with CSMember, CSUser and CSGroup classes. CSUser and CSGroup are the

classes that are providing API to work with the Content Server Users and Groups

correspondingly. CSMember is an abstract class for for CSUser and CSGroup objects. It is used

in the API where both Users and Groups classes can be passed as a parameter or return as a

method return value. users service provides set of methods to retrieve User or a Group:

get current user (user who is actually executing Content Script)

get user/group by id

get group by name

get user by login name

list group members

etc..

Get current User¶

Get by member ID¶

Performances-tip: Use the variable to avoid reloading the same information

In order to optimize performances, you should always assign information you know is not going to change (during

your script execution) to Content Script variables so to avoid to reload them everytime they are accessed.

DoDon't

def ews = docman.getEnterpriseWS()

node = docman.getNodeByPath(ews, "Training:Folder")

node = docman.getNodeByPath(ews, "An:Other:Path")

node = docman.getNodeByPath(docman.getEnterpriseWS(), "Training:Folder")

node = docman.getNodeByPath(docman.getEnterpriseWS(), "An:Other:Path")

•

•

•

•

•

•

def user = users.current // Will return CSUser object of the user that is executing the script

CSMember member

// Pass User or Group by ID. Method will return CSUser or CSGroup class objects

589 Content Script: Retrive information

Copyright © 2013-2025 AnswerModules Sagl

Get member by the name¶

Get members by ID¶

Permissions¶

Getting Content Server Node Permissions¶

Content Script docman service allows script developers to perform operations with the Content

Server permissions model. To get get node permissions:

//Pass ID of the Content Server User
member = users.getMemberById(1000)
out << member instanceof CSUserImpl // will display true

//Pass ID of the Content Server User
member = users.getMemberById(1001)
out << (member instanceof CSGroupImpl) // will return true

//Get User by ID
member = users.getUserById(1000) // will return CSUser class object

//Get group by ID
member = users.getGroupById(1001) // will return CSGroup class object

CSMember member

//Get Member using User Login Name
member = users.getMemberByLoginName("Admin") // Will return CSUser class object

//Get Member using Group Name
member = users.getMemberByLoginName("DefaultGroup") // Will return CSGroup class object

//Get User by UserName
member = users.getUserByLoginName("Admin")

//Get Group by Name
member = users.getGroupByName("DefaultGroup")

def members

//Get by IDs
members = users.getMembersByID(1000,1001)

//members[0] - is object of CSUser class
//members[1] - is object of CSGroup class

CSNode node = asCSNode(33561)
//Node permissions can be retrieved either
//calling CSNode getRigths() method
CSNodeRights nodeRights = node.getRights()

590 Content Script: Retrive information

Copyright © 2013-2025 AnswerModules Sagl

Content Server permissions model is represented as two classes CSNodeRights and

CSNodeRight. CSNodeRights class contains all the permissions of the node. It's fields

correspond to Content Server node permission type. ownerRight - Owner Permissions

ownerGroupRight - Owner Group Permissions publicRight - Public Access Permissions

ACLRights - list of Assigned permissions Every permission is an CSNodeRight object, with

following fields: rightID - ID of the User/Group to whom this Right is assigned permissions - list

of permissions set. Following options are possible:

To get node permissions:

There are set of methods to check if current user has special permissions against the node.

Methods to check permission are implemented for CSNode and they are prefixed with "has"

and than following permissions description:

hasAddItemPermission()

hasDeletePermission()

hasDeleteVersionsPermission()

hasEditAttributesPermission()

hasEditPermissionsPermission()

hasModifyPermission()

hasReservePermission()

hasSeeContentsPermission()

hasSeePermission()

Sample validation:

//or by calling docman method and passing node as an attribute
nodeRights = docman.getRights(node)

1
[SEE, SEECONTENTS, MODIFY, EDITATTRIBUTES, RESERVE, ADDITEMS, DELETEVERSIONS, DELETE, EDITPERMISSIONS]

//To get Owner Permissions
out << nodeRights.ownerRight.permissions

//To get Assignemt Permissions Users with their permissions
def assignedAccessUsers = [:]

nodeRights.ACLRights.each{ right ->
def currUser = users.getMemberById(right.rightID);
assignedAccessUsers[currUser.name] = right.permissions

}

out << assignedAccessUsers

•

•

•

•

•

•

•

•

•

CSNode node = asCSNode(33561)

out << node.hasDeletePermission() //will return TRUE if current user has Delete pemissions on a node

591 Content Script: Retrive information

Copyright © 2013-2025 AnswerModules Sagl

Categories¶

Getting Node Categories¶

Content Script docman service allows to performs full set of actions related to Content Server

categories. Below you will find samples how to get Category definition and get Content Server

node categories along with its attribute values.

Get value of the category attributes applied to a node:

You can always export the category as a map, and later on update it from the very same map:

Classification¶

Manipulation with a node Classifications in Content Script is performed by the classification

service. This sections describes how to get classifications applied to a node.

First of all if you need to check if node is classifiable:

def category = docman.getCategory(self.parent, "User Info") // Object of type CSCategory

def attributesMap = category.getAttributes() // Get map with Category Attributes

def firstNameAttr = category.getAttribute(attributesMap[2 as Long]) // get definition of the attribute with ID 2 CSCategoryAttribute

out << "Attribute ${firstNameAttr.getDisplayName()} has default value set to: ${firstNameAttr.values()}" // get default value for the attribue

def node = docman.getNodeByName(self.parent, "Folder With Categoty")

//Get Attribute value
def attrValue = node."User Info"."First Name" as String
out << "The current value of First Name is now ${attrValue}
"

//get first attribute value
attrValue = node."User Info".Phone
out << "Get first Phone attribute value ${attrValue}
"

//get all attribute values
attrValue = node."User Info".Phone as List
out << "Get all Phone attribute values ${attrValue}
"

out << node."User Info" as Map

def node = docman.getNodeByName(self.parent, "Test Folder")

//Check if Classification can be applied to the node
out << "Classification can be applied to a node: ${classification.isClassifiable(node)}"
out << "
"

//List classifialbe subtypes

592 Content Script: Retrive information

Copyright © 2013-2025 AnswerModules Sagl

To get classifications:

Executing SQL queries¶

Content Script API allows execution of SQL statements against Content Server database,

without the need for creatomg a LiveReport object. sql service has a set of methods allowing

developer to run SQL queries.

Execute a simple SQL query¶

The above query is executed with three parameters, specified as %N in the SQL statement.

SQL execution methods are returning CSReportResult class object. To get query executing result

rows feature should be used, as in the example above.

Another option to run SQL queis utilization of the sql.runSQLFast() methods. Syntax for "Fast"

methods is the same. These methods are faster implementation of the SQL execution script,

but the compromise is that they are not ThreadSafe (i.e. not to be used in multi-threaded

scripts).

out << "Classification can be applied to following node subtypes:"
out << "
"
out << classification.listClassifiebleSubTypes()

def node = docman.getNodeByName(self.parent, "Test Folder")

// get node classifications
def classifications = classification.getClassifications(node)

//Will return list of classifications applied to a node
out << classifications.collect { it.name }

Not all DBMS are equal

Please keep in mind DBMS server SQL specific syntax of the queries used. Adapt provided queries to the DBMS

server type in your environment.

out << sql.runSQL("""select * from DTree where %1 and ParentID = %2 and ModifyDate > %3""", //SQL Code to be executed
true, // true if the query must be executed using a cursor
true, // true if the query must be wrapped in a transaction (required administrative privilagies)
10, // numer of records to be returned

// Below the list of optional parameters
"#FilterObject:0", // Parameters can be a LiveReport query template expression
2000, // Integers
1.year.ago).rows // Dates

// Strings

593 Content Script: Retrive information

Copyright © 2013-2025 AnswerModules Sagl

Execute a SQL query with pagination¶

In some cases it is required to implement queries that return paginated data, e.g. for browsing

pages. sql exposes a set of methods that allow developers to easily build such queries The

example below provides an overview of the usage of sql.runPaginatedSql() API:

Working with Forms¶

Content Server Forms and Form Templates objects can be manipulated with Content Script

through the forms service API.

The most important Service API Objects returned by the aformentioned service are: CSForm,

CSFormTemplate and Form

While CSForm is used to manipulate the Content Server Forms objects (e.g. changing name,

applying categories and classifications, changing permissions etc...) the Form type is used to

represent the data submitted (record) through the form.

def sqlProjections = "DataID, Name"
def fromClause = "DTree dt"
def whereClause = "SubType = 0"
def pageSize = 5
def transaction = true

def runPaginatedQuery = { firstRow ->

def sqlResult = sql.runPaginatedSql(sqlProjections, fromClause, whereClause, firstRow, pageSize, "dt", "DataID", "ASC", transaction)

out << "
"
out << "Start row ${firstRow}"
sqlResult.rows.each { row ->

out << "
"
out << "Folder Name: ${row.name}. Name: ${row.dataid}"

}
}

runPaginatedQuery(1)
runPaginatedQuery(6)

Objects used in this paragraph's examples

The examples presented in this paragraph are all making use of a Form Object named HowTo Form associated to a

FormTemplate object named HowTo having the following structure.



594 Content Script: Retrive information

Copyright © 2013-2025 AnswerModules Sagl

The FormTemplate object has been configured to be associated to an SQL Table named Z_HowTo.

At the time of configuration Content Server produced the following SQL DDL instructions:

Which once executed, resulted in the creation of two tables: Z_HowTo and Z_HowToSet

create table Z_HowTo
(
VolumeID bigint not null,
DataID bigint not null,
VersionNum bigint not null,
Seq bigint null,
RowSeqNum int default 1 not null,
IterationNum int default 1 not null,
Field nvarchar(255) null,
Other_Field nvarchar(255) null
)
/

create index Z_HowTo_Index1
on Z_HowTo (VolumeID, DataID, VersionNum, Seq)
/

create table Z_HowToSet
(
VolumeID bigint not null,
DataID bigint not null,
VersionNum bigint not null,
Seq bigint null,
SubSeq int null,
RowSeqNum int default 1 not null,
IterationNum int default 1 not null,
Field_In_Set nvarchar(255) null
)
/

create index Z_HowToSet_Index1
on Z_HowToSet (VolumeID, DataID, VersionNum, Seq)
/

595 Content Script: Retrive information

Copyright © 2013-2025 AnswerModules Sagl

Retrive submitted data¶

To get the Content Server Form associated submitted data you can leverage the listFormData*

APIs, these APIs accept an optional filters parameter, which can be used only for Forms having

SQL Table as associated submission mechanism. Filters are Maps having as keys the names of

the tables you want to filter data from and as values a valid SQL where clause:

ScriptOutput

The Form object uses, as a submission mechanism, the SQL Storage option, while no revision mechanism has been

associated to it.

596 Content Script: Retrive information

Copyright © 2013-2025 AnswerModules Sagl

In the script above formNode in CSForm object type that has API implemented to work with

Content Server Forms. submittedData is a list of Form object types that corresponds to certain

record of the submitted form data. To access fields of the form:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

def writer = new StringWriter()
def html = new MarkupBuilder(writer)
out<< template.evaluateTemplate("#csresource(['bootstrap'])")
html.table(class:"table"){

thead{
tr(class:"danger"){

th("Field")
th("Other Field")
th("Set")

}
}
tbody{

formNode.listFormData(["Z_HowTo":" Seq in (select Seq from Z_HowToSet where Field_In_Set = 'two') "], true).each{ form -> //Form object
tr{

td(form.field.value)
td(form.otherField.value)
td{

table(class:"table table-condensed"){
thead{

tr(class:"danger"){
th("Field in Set")

}
}
tbody{

form.set.each{ row->
tr{

td(row.fieldInSet.value)
}

}
}

}
}

}
}

}
}
out << writer.toString()

def formNode = docman.getNodeByName(self.parent, "User Info Form") //returns a CSFormImpl node
def submittedData = formNode.listFormData()

597 Content Script: Retrive information

Copyright © 2013-2025 AnswerModules Sagl

In the example above following form attributes are accessed:

Field Name Normalized

First Name firstName

Last Name lastName

Age age

In scripts, form field values can be accessed using the following notation

form.normalizedname.value

where normalization is performed by the Content Suite Framework.

Also it is possible to represent Form attributed values as a Map. This allows easy access to the

form data:

Reverse logic is kept as well, meaning Form data cat be set from a Map utilizing

forms.MapToForm(Map map, Form form)

//List sumbitted data
//Access Form fields
submittedData.each {form ->

out << "User ${form.firstName[0]} ${form.lastName as String}. Age ${form.age as String}"
out << "
"

}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

// Initalize form field values: some examples

form.wordsWithSpaces.value = “TEST VALUE E” // Form template field name: words with spaces

form.camelcase.value = “TEST VALUE D” // Form template field name: camelCase

form.capitalized.value = “TEST VALUE C” // Form template field name: Capitalized

form.uppercase.value = “TEST VALUE B” // Form template field name: UPPERCASE

form.lowercase.value = “TEST VALUE A” // Form template field name: lowercase

out << "List Form data as a Map
"

//List all form Records as a Map
submittedData.each {form ->

out << "
"
out << "${forms.formToMap(form)}"

}

598 Content Script: Retrive information

Copyright © 2013-2025 AnswerModules Sagl

Content Script: Create objects

Coming soon...¶

599 Content Script: Create objects

Copyright © 2013-2025 AnswerModules Sagl

Integrate LLM services

Module Suite Training Center¶

What is it?¶

Module Suite Training Center is a simple Module Suite application that allows you to download

and configure on your system a series of simple examples of using the Module Suite. The

examples are organized into two main categories: Content Script and Beautiful Webforms and

listed in increasing order of complexity.

Training Center setup¶

Installing the Training Center application on your system is a straightforward procedure and

can be performed using the Module Suite Content Script Volume Import Tool.

Within the Content Script Volume Import Tool, locate the section dedicated to CS Tools.

No Representations or Warranties; Limitations on Liability

The Training Center application (THE APPLICATION) has been created with the sole purpose of showcasing the

Module Suite's capabilities. As such, it should not be utilized in productive environments and AnswerModules in

no way guarantees that included examples are fully functional or free of errors. The information and materials on

the Training Center application could include technical inaccuracies or typographical errors. Changes are

periodically made to the information contained within it. AnswerModules Sagl MAKES NO REPRESENTATIONS OR

WARRANTIES WITH RESPECT TO ANY INFORMATION, MATERIALS, CODES OR GRAPHICS ON THE APPLICATION, ALL OF

WHICH IS PROVIDED ON A STRICTLY "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND AND HEREBY EXPRESSLY

DISCLAIMS ALL WARRANTIES WITH REGARD TO ANY INFORMATION, MATERIALS CODES OR GRAPHICS ON THE

APPLICATION, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NON-INFRINGEMENT. UNDER NO CIRCUMSTANCES SHALL AnswerModules Sagl BE LIABLE UNDER ANY THEORY OF

RECOVERY, AT LAW OR IN EQUITY, FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, SPECIAL, DIRECT, INCIDENTAL,

CONSEQUENTIAL OR PUNITIVE DAMAGES (INCLUDING, BUT NOT LIMITED TO LOSS OF USE OR LOST PROFITS), ARISING

OUT OF OR IN ANY MANNER CONNECTED WITH THE USE OF INFORMATION OR SERVICE, OR THE FAILURE TO PROVIDE

INFORMATION OR SERVICES, FROM THE APPLICATION.

600 Integrate LLM services

Copyright © 2013-2025 AnswerModules Sagl

../../../administration/csvolume_import_tool/

If the tool has not been installed yet (unchecked box on the right) proceed to install it by

clicking on the "import" button.

Once complete, the Training Center tool will appear as "imported".

Using the tool¶

In order to access the tool:

navigate to the Content Script Volume : CSTools : Training Center folder.

alternatively, from the Content Script Volume Import Tool, click on the CSTools Training

Center link as shown below.

Internet access required

Your browser must have access to the Internet in order to properly execute the application of the Training Center.

As administrator

The examples must be imported using a user with administrative rights on the system (for example, the

administrator user). Your browser is required to have access to the internet in order to be able to properly run the

Training Center application.

•

•

601 Module Suite Training Center¶

Copyright © 2013-2025 AnswerModules Sagl

../../../administration/csvolume_import_tool/

execute the main Dashboard script to launch the tool.

To download and configure an example on your system just press the "download" button

associated with it. The application will automatically download the required resources from the

developer.answermodules.com portal and install / configure them on your system.

Once imported, the example will be available under Enterprise:Module Suite examples. Imported

example are also directly accessible by clicking on the example title within the Training Center

tool.

•

602 Module Suite Training Center¶

Copyright © 2013-2025 AnswerModules Sagl

Tags¶

Following is a list of relevant tags:

CARL¶

LLM services

Model Context Protocol¶

MCP

OpenAI¶

LLM services

MCP

OpenAI APIs

administration¶

Administration tools

Content Script Volume Import Tool

batch¶

OpenAI APIs

Do not manually delete imported examples

We strongly advise you not to manually delete any imported examples with the Training Center application. If you

want to remove the example from your system, press the "clean" button associated with it (the application will

perform the necessary cleanup steps on your behalf)

•

•

•

•

•

•

•

•

603 Tags¶

Copyright © 2013-2025 AnswerModules Sagl

../working/ai/llm/
../working/ai/mcp/
../working/ai/llm/
../working/ai/mcp/
../working/ai/openai_apis/
../administration/modulesuite/
../administration/csvolume_import_tool/
../working/ai/openai_apis/

clustered installation¶

Installing on a clustered environment

Upgrading a clustered environment

commands¶

SmartPages commands

configuration¶

Usage in Production

container¶

Installing on containers

cost optimization¶

OpenAI APIs

installation¶

Apply Hotfixes

Applying the license key manually

Configure

Content Script Volume Import Tool

Deploying on Unix/Linux

Deploying on Windows

Getting Started

Importing the license key

Install

Installing Beautiful WebForms

Installing Content Script

Installing Script Console

Installing Smart Pages

Installing on a clustered environment

Installing on containers

Upgrading a clustered environment

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

604 Tags¶

Copyright © 2013-2025 AnswerModules Sagl

../installation/clustered_installation/
../installation/upgrade/clustered_upgrade/
../working/smartui/commands/
../installation/modulesuite/configure_prod/
../installation/modulesuite/install_on_containers/
../working/ai/openai_apis/
../installation/modulesuite/patch/
../installation/modulesuite/activate_manual/
../installation/modulesuite/configure/
../administration/csvolume_import_tool/
../installation/modulesuite/deploy_unix/
../installation/modulesuite/deploy_windows/
../installation/modulesuite/getstarted/
../installation/modulesuite/activate_import/
../installation/modulesuite/install/
../installation/beautifulwebforms/
../installation/contentscript/
../installation/scriptconsole/
../installation/smartui/
../installation/clustered_installation/
../installation/modulesuite/install_on_containers/
../installation/upgrade/clustered_upgrade/

integration¶

MCP

javascript¶

SmartPages commands

llm¶

LLM services

OpenAI APIs

mcp¶

MCP

performances-tips¶

Content Script: Retrive information

Usage in Production

Widgets

productive¶

Usage in Production

radio channel¶

SmartPages commands

smartui¶

SmartPages commands

uninstallation¶

Uninstalling Module Suite

•

•

•

•

•

•

•

•

•

•

•

•

605 Tags¶

Copyright © 2013-2025 AnswerModules Sagl

../working/ai/mcp/
../working/smartui/commands/
../working/ai/llm/
../working/ai/openai_apis/
../working/ai/mcp/
../howto/retrive/
../installation/modulesuite/configure_prod/
../working/bwebforms/widgets/
../installation/modulesuite/configure_prod/
../working/smartui/commands/
../working/smartui/commands/
../installation/uninstallation/

unix¶

Deploying on Unix/Linux

Installing Script Console

upgrade¶

Content Script Volume Import Tool

Getting Started

Upgrading

Upgrading a clustered environment

•

•

•

•

•

•

606 Tags¶

Copyright © 2013-2025 AnswerModules Sagl

../installation/modulesuite/deploy_unix/
../installation/scriptconsole/
../administration/csvolume_import_tool/
../installation/upgrade/getstarted/
../installation/upgrade/upgrade/
../installation/upgrade/clustered_upgrade/

	Module Suite 3.9.0 User Manual
	Module Suite 3.9.0 User Manual
	About this guide
	Release Notes
	Module Suite 3.9.0
	Module Suite 3.8.0
	Module Suite 3.7.0
	Module Suite 3.6.0
	Module Suite 3.5.0
	Module Suite 3.4.0
	Module Suite 3.3.0
	Module Suite 3.2.1
	Module Suite 3.2.0
	Module Suite 3.1.0
	Module Suite 3.0.0

	Architecture
	Module Suite
	Module Suite Extensions
	Applicative Layers
	Requirements, links and dependencies
	Modules layouts

	Installation and Upgrade
	Installing Module Suite
	Upgrading Module Suite
	Other installation guides
	Applying HotFixes
	Uninstalling Module Suite
	Usage in Production

	Administration
	Administration tools
	Content Script Volume
	Content Script Volume Import Tool

	Content Script
	Getting started
	Content Management Object
	Editor
	Language basics
	Writing and executing scripts
	Working with workflows
	Managing events (callbacks)
	Extending REST APIs
	Extending Content Script
	Content Script extension for SAP
	Extension: Classic UI
	Extension: AI (LLM)
	Extension: AdobeSign

	Beautiful WebForms
	Getting started
	Content Management Object
	Editor
	Building views
	Widgets
	Extending BWF
	Embed into SmartUI
	Update view library
	Extension: Mobile WebForms
	Extension: Remote WebForms

	Smart Pages
	Getting started
	Introduction to Smart Pages
	Content Management Object
	Editor
	WebForms Integration
	Smart UI Tiles
	Smart View Overrides
	Tile Communication
	SmartPages commands

	Script Console
	Working with Script Console

	Extension for DocuSign
	Working with DocuSign

	How to
	Content Script: Retrive information
	Content Script: Create objects
	Integrate LLM services
	Training Center

	Tags

	About this guide
	Audience and objective¶
	Prerequisites¶

	Release Notes
	Version 3.9.0 - Release notes¶
	Module Suite Compatibility Matrix¶
	Major Changes in version 3.9.0¶
	Large Language Models (LLM) Integration¶
	Model Context Protocol (MCP) Integration¶
	SmartUI Commands¶
	Beautiful WebForms¶
	Adobe Sign Integration¶
	Content Script¶
	Administration¶

	All Enhancements in version 3.9.0¶
	Issues Resolved in version 3.9.0¶

	Version 3.8.0 (Venus)- Release notes¶
	Module Suite Compatibility Matrix¶
	All Enhancements in version 3.8.0¶
	Issues Resolved in version 3.8.0¶

	Version 3.7.0 (Earth)- Release notes¶
	Module Suite Compatibility Matrix¶
	SASL Memcache Authentication Support¶
	Steps to Enable SASL Memcache Authentication¶

	Module Suite 3.7.0 Breaking Changes¶
	Important naming/structuring changes¶
	Maven coordinate change¶
	Legacy package removal¶

	New features¶
	Switch expressions¶
	Sealed types¶
	Records and record-like classes (incubating)¶
	Built-in type checkers¶
	GINQ, a.k.a. Groovy-Integrated Query or GQuery (incubating)¶
	Other improvements¶

	Legacy consolidation¶
	JDK requirements¶

	All Enhancements in version 3.7.0¶
	Issues Resolved in version 3.7.0¶
	Dependencies updated in version 3.7.0¶

	Version 3.6.0 (Genève)- Release notes¶
	Module Suite Compatibility Matrix¶
	All Enhancements in version 3.6.0¶
	Issues Resolved in version 3.6.0¶

	Version 3.5.0 (Rome)- Release notes¶
	Module Suite Compatibility Matrix¶
	All Enhancements in version 3.5.0¶
	Issues Resolved in version 3.5.0¶

	Version 3.4.0 (Rancate) - Release notes¶
	Module Suite Compatibility Matrix¶
	All Enhancements in version 3.4.0¶
	Issues Resolved in version 3.4.0¶

	Version 3.3.0 (Montebello) - Release notes¶
	Module Suite Compatibility Matrix¶
	All Enhancements in version 3.3.0¶
	Issues Resolved in version 3.3.0¶

	Version 3.2.1 (Morcote) - Release notes¶
	Module Suite Compatibility Matrix¶
	All Enhancements in version 3.2.1¶
	Issues Resolved in version 3.2.1¶

	Version 3.2.0 (Locarno) - Release notes¶
	Module Suite Compatibility Matrix¶
	Major Changes in version 3.2.0¶
	Content Script Volume management¶

	Issues Resolved in version 3.2.0¶

	Version 3.1.0 (Ascona) - Release notes¶
	Module Suite Compatibility Matrix¶
	Major Changes in version 3.1.0¶
	All Enhancements in version 3.1.0¶
	Issues Resolved in version 3.1.0¶

	Version 3.0.0 (Generoso) - Release notes¶
	Module Suite Compatibility Matrix¶
	Major Changes in version 3.0.0¶
	IDEs¶
	Filtering¶
	Remote snippets repositories¶
	Concurrent Script Editing¶

	Content Script¶
	Administration¶
	Beautiful WebForms¶
	New V5 library¶

	New widgets for library V4¶
	Smart Pages¶
	Commands definition cache¶
	Actions definition cache¶
	Overrides optimization¶
	How OM is created ?¶

	All Enhancements in version 3.0.0¶
	Issues Resolved in version 3.0.0¶

	Architecture
	Module Suite
	Beautiful WebForms¶
	Content Script¶
	Smart Pages¶
	Script Console¶
	Module Suite default extensions¶
	Content Script Extension For Workflows¶
	Content Script Extension For WebReports¶
	Module Suite Extension For ClassicUI¶

	Module Suite Extensions
	ModuleSuite Extension For DocuSign¶
	ModuleSuite Extension For ESign¶

	Applicative Layers
	Requirements, links and dependencies
	Module Suite Compatibility Matrix¶
	Dependencies¶

	Modules layouts
	Content Script¶
	amlib¶
	csscripts¶
	library¶
	override¶

	Beautiful WebForms¶
	Script console¶
	Script Console main configuration file¶

	Installation and Upgrade
	Installing Module Suite
	Getting ready to install Module Suite¶
	Overview of the Module Suite installation process¶
	Prerequisites¶

	Deploy
	Module Suite installation guide: Deploy Modules on Windows¶
	Overview¶
	Step-by-step Deployment¶

	Module Suite installation guide: Deploy Modules on Unix/Linux¶
	Overview¶
	Step-by-step Deployment¶

	Module Suite installation guide: Install Modules¶
	Overview¶
	Step-by-step Installation¶
	Apply the available hotfixes¶

	Activate
	Module Suite installation guide: Importing the activation key¶
	Overview¶
	Locating the Activation Key in Your Module Suite Fulfillment Document¶
	Example¶

	Importing the License Key¶

	Module Suite installation guide: Manually setting the activation key¶
	Overview¶
	Locating the Activation Key in Your Module Suite Fulfillment Document¶
	Example¶

	Applying the License Key manually¶

	Module Suite installation guide: Initial Configuration¶
	Overview¶
	Importing the core library components¶

	Module Suite installation guide: Install Hotfixes¶
	Overview¶
	Applying patches¶

	Installing Module Suite on a clustered environment¶
	Deployment on the primary node¶
	Deployment on the secondary node(s)¶

	Install Module Suite on OpenText Extended ECM CE¶
	Overview of the installation phases¶
	What is covered by this guide¶
	Prerequisites¶
	Software Download References¶
	Additional Requirements¶

	Build Init Containers¶
	Understanding Init Containers¶
	Step-by-Step Procedure¶
	Init Container FS structure¶
	Build the container¶
	Push the Init Containers to your image repository¶

	Deploy¶
	Enable extensions in Helm deployment¶
	Specify Init container details¶

	Upgrading Module Suite
	Getting ready to upgrade Module Suite¶
	Overview of the Module Suite upgrade process¶
	Prerequisites¶

	Upgrading Module Suite¶
	Deploy the new Modules on the target system¶
	Perform the Module upgrade¶
	Apply the available hotfixes¶
	Activate the software¶
	Upgrading from Versions Below 3.2¶
	Step-by-Step Renaming Process¶

	Update the Module Suite Configuration¶
	How the library upgrade works¶

	Upgrading Module Suite on a clustered environment¶
	Deployment on the primary node¶
	Deployment on the secondary node(s)¶

	Other installation guides
	Installing Content Script¶
	Deployment Phase - Select the components to be installed¶
	Installation Phase - Step-by-step Installation¶

	Installing Beautiful WebForms¶
	Getting Started - Prerequisites¶
	Deployment Phase - Select the components to be installed¶
	Installation Phase - Step-by-step Installation¶
	Activation Phase¶

	Installing Smart Pages¶
	Getting Started - Prerequisites¶
	Deployment Phase - Select the components to be installed¶
	Installation Phase - Step-by-step Installation¶
	Activation Phase¶

	Script Console installation guide¶
	Installation procedure¶
	Configure Script Console¶

	Installing Module Suite Extension Packages¶
	Installation procedure¶
	Rendition Extension Package¶
	What is it?¶
	Install the third party rendition engine¶
	rend¶
	Installation (Windows)¶
	Installation (Unix)¶

	Configuration¶
	wkhtmltopdf (Deprecated)¶
	Installation¶
	Configuration¶

	Content Script Extension for SAP¶
	What is it?¶
	Extension setup¶
	Installing the Content Script Extension for SAP¶
	Installation validation¶
	Configuration options¶

	Installing Extension for DocuSign
	Prerequisites¶
	Installation procedure¶
	Installing the Content Script Extension for DocuSign¶
	Installing the Script Console Extension for DocuSign (OPTIONAL)¶
	Configuration¶

	Admin dashboard¶

	Applying HotFixes
	Hotfixes deployment¶

	Uninstalling Module Suite
	Uninstallation procedure¶

	Introduction¶
	Base Configuration¶
	Configuration Parameters¶
	Performance Optimization Parameters Table¶
	Usage-Based Tuning Parameters Table¶

	Content Script Volume¶
	Importing SmartView Enhancements¶

	Administration
	Module Suite Administration Tools¶
	Base Configuration¶
	Software activation key status¶
	Content Script Volume Library¶
	Enable / Disable Module Suite features¶
	Select default IP address¶

	SASL Memcache Authentication Support¶
	Steps to Enable SASL Memcache Authentication¶

	Logging administration¶
	Accessing the log file¶
	Log level configuration¶

	Scheduling management utility (Manage Scheduling)¶
	Callbacks management utility (Manage Callbacks)¶
	Module Suite Report utility¶

	The Content Script Volume¶
	CSSystem¶
	CSFormTemplates¶
	CSHTMLTemplates¶
	CSFormSnippets¶
	CSScriptSnippets¶

	Content Script Volume Import Tool¶
	Overview¶
	Accessing the Content Script Volume Import Tool¶
	Volume Library utility¶
	Module Suite Features utilities¶
	Events¶
	Classic View¶
	Columns¶
	Smart View¶
	Tools¶
	Extended ECM¶

	Volume's Conflicts Resolution utility¶
	Identifying conflicts¶
	Import options¶

	Content Script
	Getting Started with Content Script¶
	What is Content Script?¶
	Key Components¶
	Quick Start Guide¶
	1. Understanding the Basics¶
	2. Creating Your First Script¶
	3. Learning the Language¶
	4. Working with APIs¶
	5. Event-Driven Programming¶
	6. Extending Functionality¶

	Content Management Object
	Creating a Content Script¶
	Object's properties¶
	Static variables¶
	Scheduling¶
	Impersonate¶
	Icon Selection¶

	Editor
	Shortcuts¶
	Top Bar controls (DEVELOPER)¶
	Top Bar controls (ADMINISTRATOR)¶
	Auto-completion¶
	AI Autocompletion¶
	Code Validation¶
	Versions tab¶
	Code Snippet library¶
	Online Help¶

	Language basics
	Statements¶
	Basic Control Structures¶
	Flow control: if – else¶
	Flow control: if - else if - else¶
	Flow control: inline if - else¶
	Flow control: switch¶
	Looping: while¶
	Looping: for¶

	Operators¶
	Methods and Service Parameters¶
	Properties and Fields¶
	Comments¶
	Closures¶
	Content Script programming valuable resources¶

	Writing and executing scripts
	API Services¶
	Content Script API Service¶
	Content Script API Objects¶

	Execution context¶
	Request variables¶
	Support variables¶
	Support objects¶

	Base API¶
	Script's execution¶
	Script's output¶
	HTML (default)¶
	JSON¶
	XML¶
	Files¶
	Managed resources¶

	Redirection¶
	HTTP Code¶

	Advanced programming¶
	Templating¶
	Content Script velocity macros¶

	OScript serialized data structures¶
	Optimizing your scripts¶
	Behaviors¶
	BehaviorHelper¶
	Default Behaviours¶

	Working with workflows
	Content Script Workflow Steps¶
	Content Script Package¶
	Content Script Workflow Step¶
	Workflow routing¶

	Synchronous and Asynchronous callbacks¶
	Synchronous Callbacks Configuration¶
	Default Settings¶
	Enabling Synchronous Callbacks¶
	User-Specific Configuration¶
	Specifying Excluded Users¶

	InterruptCallbackException - transaction roll-backed¶

	Extending REST APIs
	Extending REST APIs:CSServices¶
	Basic REST service¶
	Behaviour based REST services¶
	Service example¶

	Extending Content Script
	Create a Custom Service¶
	Content Script SDK setup¶
	content-script-services.xml – Service description file¶

	Content Script Extension for SAP¶
	Using the extension¶
	Function execution results¶

	SAP service APIs¶
	API Objects¶
	SapField¶
	SapFunction¶
	SapStructure¶
	SapTable¶

	Extension: Classic UI
	Customize an object's functions menu: CSMenu¶
	Customize a space's add-items menu: CSAddItems¶
	Customize a space's buttons bar: CSMultiButtons¶
	Customize a space's displayed columns: CSBrowseViewColumns¶
	Default Columns¶

	Customize a space content view: CSBrowseView¶
	Create a custom column backed by Content Script: CSDataSources¶

	Extension: AI (LLM)
	LLM services
	Integrate Large Language Models in your workflow¶
	Introduction¶
	Architecture and Networking¶
	Integration with xECM¶
	LLM API Communication¶
	Local Embedding Indexes¶
	Typical Communication Sequence¶

	Service Provider Support in Module Suite¶
	OpenAI API Providers (OpenAI and Microsoft Azure AI)¶
	Ollama API Support¶

	Components of the LLM Service Integration¶
	Content Script¶
	OpenAI Extension Package Service¶
	LLM Extension Package Service¶

	Widgets¶
	Smart Pages Widget (named CARL)¶
	Beautiful WebForm Widget (named CARL)¶

	Services¶
	Content Script Service (named carl)¶

	Code Snippets¶
	Content Script Snippets¶

	CARL (Content Server Artificial intelligence Resource and Liaison)¶
	CARL Integration in Content Script Editor¶

	Integration Use Cases¶
	Chat Completion¶
	Example: Basic Chat Interaction¶

	Chat Completion (continued)¶
	Example: Streaming Chat Completion¶
	Additional considerations: Producer-Consumer Pattern¶
	Default Consumer Service¶
	Sequence Diagram¶

	Function Calling¶
	Example: Creating Folders Using AI¶

	Document Assembly¶
	Example: Create a presentation letter in Word¶
	Additional considerations: Implementation details¶

	Embedding Index Generation¶
	Example: Indexing a single document¶
	Additional Considerations: Implementation Highlights¶

	Retrieval-Augmented Generation (RAG)¶
	Example: Using a all the documents in a folder as a Knowledge Base¶
	Additional Considerations: Implementation Highlights¶

	Configuration¶
	CARL Service Configuration Overview¶
	LLM Service Configuration Overview¶
	Defining New LLM Service Profiles¶

	OpenAI APIs
	OpenAI Batch Processing¶
	Introduction¶
	How Does Batch Processing Work?¶
	Examples¶
	Example 1¶
	Example 2¶
	Example 3¶
	Example 4¶

	Supported Request Types¶
	Batch Status Lifecycle¶
	Best Practices¶

	OpenAI Evaluations (Evals)¶
	Introduction¶
	What are Evals Used For?¶
	How Do Evals Work?¶
	Testing Criteria (Graders)¶
	Example: Creating and Running an Eval with String Check Grader¶
	Step 1: Create the Eval¶
	Step 2: Prepare the Eval Data File¶
	Step 3: Create an Eval Run¶
	Step 4: Managing Eval Runs¶

	Managing Evals¶
	Other Grader Types¶

	OpenAI Fine-Tuning¶
	Introduction¶
	Fine-Tuning Methods¶
	Example: DPO Fine-Tuning¶
	Step 1: Prepare DPO Training Data¶
	Step 2: Create the Fine-Tuning Job¶
	Step 3: Managing Fine-Tuning Jobs¶

	Other Fine-Tuning Methods¶

	MCP
	Integrate Model Context Protocol in your workflow¶
	Introduction¶
	Architecture and Networking¶
	Integration with xECM¶
	MCP Server Communication¶
	Authentication Mechanisms¶
	Typical Communication Sequence¶

	Components of the MCP Service Integration¶
	Content Script Service¶
	MCP Extension Package Service¶

	Integration Use Cases¶
	Tool Discovery¶
	Example: Listing Available Tools¶

	Tool Execution¶
	Example: Executing a Tool¶

	MCP Tools with OpenAI Integration¶
	Example: Using MCP Tools with OpenAI¶

	Core Concepts¶
	Capability-Based Negotiation¶
	Tools¶

	Configuration¶
	MCP Service Configuration Overview¶
	OAuth2 Configuration¶
	Custom Authorization Configuration¶

	Authentication¶
	OAuth2 Authentication¶
	Token Management¶
	Custom Authorization¶
	EXAMPLE: Authorizing the application on the MCP endpoint¶
	EXAMPLE: Using custom authorization¶

	Troubleshooting¶
	Common Issues¶
	Authentication Errors¶
	Configuration Errors¶
	Tool Execution Failures¶

	Additional Resources¶

	Extension: AdobeSign
	Adobe Sign Integration Guide¶
	Overview¶
	Key Benefits¶

	System Requirements¶
	Adobe Sign Requirements¶
	Content Server Requirements¶
	Network Requirements¶

	Configuration¶
	Step 1: Create Adobe Sign Application¶
	Step 2: Configure Module Suite Profile¶
	Step 3: Profile Configuration Example¶

	Authentication Flow¶
	Initial Authentication¶
	Token Management¶

	Core Concepts¶
	Agreements¶
	Agreement States¶
	Participant Roles¶
	Document Types¶
	Transient Documents¶
	Library Documents¶

	API Reference¶
	Service Methods¶
	Authentication & Configuration¶
	Document Management¶
	Agreement Management¶
	Document Retrieval¶

	Builder Classes¶
	Agreement Request Builder¶
	Participant Set Builder¶
	File Info Builder¶

	Usage Examples¶
	Basic Agreement Creation¶
	Advanced Agreement with Multiple Participants¶
	Using JSON Configuration¶
	Library Template Management¶
	Agreement Status Monitoring¶

	Advanced Features¶
	Reminder Management¶
	Basic Reminder¶
	Scheduled Reminders¶

	Deliverable Access¶

	Business Workspace Integration¶
	Integration Workflow¶
	Category Structure¶
	Agreement Category¶
	Document Category¶

	System Architecture¶
	Business Workspace Setup¶
	Complete Business Workspace Script¶

	Status Monitoring and Synchronization¶
	Monitoring Approaches¶
	Polling-Based Monitoring¶
	Webhook-Based Monitoring¶
	How to create an Adobe Sign webhook¶
	Creating a webhook using the Module Suite Extension for Adobe Sign¶
	Deleting a webhook using the Module Suite Extension for Adobe Sign¶

	How to handle webhook payloads¶

	Troubleshooting¶
	Common Issues¶
	Authentication Errors¶
	Document Upload Failures¶
	Agreement Creation Failures¶

	Debugging Tips¶
	Performance Considerations¶
	Security Best Practices¶

	Additional Resources¶

	Beautiful WebForms
	Getting Started with Beautiful WebForms¶
	What is Beautiful WebForms?¶
	Key Components¶
	Quick Start Guide¶
	1. Understanding the Basics¶
	2. Creating Form Objects¶
	3. Building Forms¶
	4. Working with Widgets¶
	5. Advanced Features¶

	Prerequisites¶
	Next Steps¶

	Content Management Object
	Creating a Beautiful WebForms View¶
	Understanding the view object¶
	Layout¶
	AI-Based Form Builder¶
	How It Works¶
	Key Features¶
	Allow Creating New Fields¶
	Single Widget Configuration¶
	Context Support¶

	Developer Guide: Editor Overview¶
	Main Area Functionality¶
	Editor Exclusivity¶
	Shortcuts¶
	Top Bar controls (DESIGNER)¶
	Top Bar controls (DEVELOPER)¶

	Building views
	Understanding the grid system¶
	Understanding the Beautiful WebForms request life-cycle¶
	How incoming requests are processed¶
	Lifecycle schema¶
	Custom Logic Execution Hooks (CLEH)¶
	Managing form fields values¶
	Adding and removing values from multivalue fields¶
	Form actions¶
	Standard form actions¶

	Custom form actions¶

	Attaching Custom information and data to a Beautiful WebForms view¶
	ViewParams¶
	ViewParams variables¶
	Form Components that make use of 'viewParams' values.¶

	The widgets library¶
	The widget configuration panel¶

	Beautiful WebForms View Templates¶
	Customize the way validation error messages are rendered¶
	Display errors in Smart View¶

	Widgets
	Beautiful WebForms Widgets¶
	Model and Template¶
	Static Resources Management¶
	Widgets libraries¶
	Widget Library V1¶
	Widget Library V2¶
	Widget Library V3¶
	Widget Library V4¶

	Extending BWF
	Content Script Volume¶
	CSServices¶
	CSFormTemplates¶
	CSFormSnippets¶

	Embed into Smart View¶
	Why?¶
	Create an embeddable WebForms¶
	How to publish a Webform into a Smart View perspective¶
	ModuleSuite Smart Pages is installed¶
	ModuleSuite Smart Pages is not installed¶

	Beautiful Webforms views updater¶
	What is it?¶
	Installation¶
	Prerequisites¶
	Installation Steps¶

	Getting Started¶
	Main Dashboard¶
	Dashboard Features¶
	Navigating the Main Dashboard¶

	Update Views Configuration¶
	Library Update¶
	Default View Template¶
	Content Source¶
	Backup View¶
	View Ids¶

	Updating Views¶
	Help Guide¶
	Troubleshooting¶
	Conclusion¶

	Extension: Mobile WebForms
	What is it?¶
	AppWorks Mobile Application¶
	Module Suite based extension for REST APIs¶
	Mobile WebForms Application Builder¶

	Mobile WebForms setup¶
	Using the tool¶
	Creating the form¶
	Implementing the Content Script end-point¶
	Building the OpenText AppWorks Gateway Application¶

	Extension: Remote WebForms
	What is it?¶
	Extension setup¶
	Create remote package¶
	Using forms.createExPackage API¶
	Using Beautiful Webforms Studio¶

	How to deploy a Beautiful WebForms remote form package¶
	Synchronize form data back to Content Server¶
	Remote data pack files are produced on Script Console and sent over to Content Server¶
	Form data are submitted directly from Script Console¶

	Smart Pages
	Getting Started with Smart Pages¶
	What is Smart Pages?¶
	Key Components¶
	Quick Start Guide¶
	1. Understanding the Basics¶
	2. Working with Tiles¶
	3. Creating Smart Pages¶
	4. Customizing Smart View¶
	5. Integrating WebForms¶
	6. Advanced Features¶

	Smart Pages Fundamentals¶
	Introduction¶
	What is "Smart Pages"?¶
	Smart Pages: Usage Examples¶
	Tailored Perspectives with Custom Tiles¶
	Tailored Smart View Features (Menus, Columns)¶
	Standalone UIs¶
	Embedded Forms¶

	Smart Pages in the Module Suite Architecture¶
	What's in the Smart Pages Toolkit?¶
	Next Steps¶

	The Smart Pages Object¶
	Overview¶
	Creating a Smart Page¶
	Prerequisites¶
	Creation Steps¶

	Understanding the Smart Page object¶
	Smart Page: The MVC Pattern¶

	Next Steps¶

	The Smart Pages Object¶
	Editing a Smart Page: The Smart Pages Editor IDE¶
	Layout¶
	AI-Based Smart Page Builder¶
	How It Works¶
	Key Features¶
	Single Component Configuration¶
	Context Support¶

	Next Steps¶

	WebForms in Smart Pages¶
	Overview¶
	Why Embed WebForms in Smart Pages?¶
	Prerequisites¶
	Creating an Embeddable WebForm¶
	Embedding WebForms in Smart Pages¶
	Method 1: Using Content Script Result Tile¶

	Next Steps¶

	Smart UI Tiles¶
	Available Smart Page Tiles¶
	Tile Configuration¶
	Common Configuration Options¶

	Content Script Data Sources¶
	Tile Library Reference¶
	Content Script Tile Chart¶
	Content Script Tile Tiles¶
	Content Script Tile Links¶
	Content Script Tile Tree¶
	Content Script Node Table¶
	Content Script Result¶

	Icon Reference Cheat Sheet¶
	Iconset Color Codes¶
	All Icons¶

	Next Steps¶

	Smart View Overrides¶
	Overview¶
	General Concepts¶
	Folder Structure¶

	Override Map (OM) and Actual Override Map (AOM)¶
	Override Map Structure¶
	Override Evaluation Order¶
	How OM is Created¶
	Example Folder Structure¶

	Actual Override Map (AOM)¶
	Override Map Creation Timeline¶
	Initial System Startup¶
	Per-Space Navigation¶

	Volume Cache Configuration¶
	Parameter: amcs.amsui.volumeCache¶
	Cache Storage Architecture¶
	Cache Management¶

	Smart View Custom Menus¶
	Menu Command Definition¶
	Basic Command Definition¶
	Command with Confirmation¶
	Command with Panel¶
	Grouped Commands¶

	Override Configuration¶
	Override Map Format¶
	Dynamic Override Script¶

	Smart View Custom MetaPanels¶
	MetaPanel Definition Script¶
	Basic MetaPanel Definition¶

	Smart View Custom Columns¶
	Column Definition Script¶
	Basic Column Definition¶
	Column Definition Properties¶

	Column Override Definition¶

	Smart View Custom Actions¶
	Registering a Smart View Action¶
	Actions Object Structure¶
	Action Registration Script¶

	Command Execution and Return Values¶
	Success Message¶
	Error Message¶

	Best Practices¶
	Override Scripts¶
	Performance¶
	Security¶

	Next Steps¶

	Communication Between Different Tiles¶
	Overview¶
	Radio Channel Communication¶
	Initializing the Radio Channel¶

	Communication Patterns¶
	Pattern 1: Command-Based Communication¶
	Sending Commands¶
	Receiving Commands¶

	Pattern 2: Request-Response Communication¶
	Making Requests¶
	Providing Data¶

	Pattern 3: Event Broadcasting¶
	Broadcasting Events¶
	Listening to Events¶

	Common Communication Scenarios¶
	Scenario 1: Chart and Filter Tiles¶
	Filter Tile (Sender)¶
	Chart Tile (Receiver)¶

	Scenario 2: Links Tile and Node Table¶
	Links Tile (Sender)¶
	Node Table Tile (Receiver)¶

	Scenario 3: Tree Tile and Content Display¶
	Tree Tile (Sender)¶
	Content Tile (Receiver)¶

	Scenario 4: Smart Page Actions¶
	Triggering Smart Page Actions¶
	Smart Page Action Handler¶

	Reload Commands¶
	Configuration¶
	Benefits¶

	Best Practices¶
	Command Naming¶
	Error Handling¶
	Performance¶
	Debugging¶

	Advanced Patterns¶
	Pattern: Observer Pattern¶
	Pattern: Mediator Pattern¶

	Next Steps¶

	SmartPages commands
	Integrate SmartUI Commands in your workflow¶
	Introduction¶
	Architecture and Communication¶
	Radio Channel Communication¶
	Command Pattern¶
	Typical Communication Sequence¶

	Components of the SmartUI Commands Integration¶
	Command Handlers¶

	Integration Use Cases¶
	Displaying Action Toolbars¶
	Example: Basic Toolbar Display¶

	Displaying Document Viewers¶
	Example: Document Viewer Display¶

	Displaying Smart Pages¶
	Example: Loading Smart Pages¶

	Displaying Side Panels¶
	Example: Side Panel Display¶

	Displaying Loading Indicators¶
	Example: Loading Indicators¶

	Displaying Messages¶
	Example: Global Messages¶

	Closing Panels¶
	Example: Closing Panels¶

	Using Commands from Tiles Widgets¶
	Example: Tile Widget Command¶

	Best Practices¶
	Summary¶

	Script Console
	Working with Script Console
	Execution modes¶
	Command Line Shell Mode¶
	Script Interpreter Mode¶
	Server Mode¶

	Script repositories¶
	Script Console Internal scheduler configuration file¶

	Extension for DocuSign
	Working with DocuSign
	Creating a signing Envelope¶
	EXAMPLE: Creating a simple envelope¶
	EXAMPLE: Creating an envelope using a predefined template¶

	Embedded recipients¶
	EXAMPLE: Get a pre-authenticated signing URL for an OTCS internal user¶

	Envelope status update and signed document synch back¶
	EXAMPLE: Poll DocuSign for Envelope updates and synch back documents¶

	How to
	Content Script: Retrive information
	Nodes¶
	Getting Content Server nodes¶
	Getting a node given its ID¶
	Get a list of nodes given their IDs¶
	Get Volumes¶
	Get Nodes By Path¶

	Users and Groups¶
	Getting Content Server Users and Groups¶
	Get current User¶
	Get by member ID¶
	Get member by the name¶
	Get members by ID¶

	Permissions¶
	Getting Content Server Node Permissions¶

	Categories¶
	Getting Node Categories¶

	Classification¶
	Executing SQL queries¶
	Execute a simple SQL query¶
	Execute a SQL query with pagination¶

	Working with Forms¶
	Retrive submitted data¶

	Content Script: Create objects
	Coming soon...¶

	Integrate LLM services
	Module Suite Training Center¶
	What is it?¶
	Training Center setup¶
	Using the tool¶

	Tags¶
	CARL¶
	Model Context Protocol¶
	OpenAI¶
	administration¶
	batch¶
	clustered installation¶
	commands¶
	configuration¶
	container¶
	cost optimization¶
	installation¶
	integration¶
	javascript¶
	llm¶
	mcp¶
	performances-tips¶
	productive¶
	radio channel¶
	smartui¶
	uninstallation¶
	unix¶
	upgrade¶

